

Influence des propriétés physico-mécaniques des minéraux argileux dans l'altération de la pierre monumentale

Mathilde **TIENNOT**

Séance technique et scientifique du CFMR

8 octobre 2020

Culture Communication Laboratoire de Recherche des Monuments Historiques

Desquamation en plaque

Formation d'une plaque due à l'initiation et la propagation subparallèle d'une fissure à la surface de la pierre au cours des sollicitations naturelles

ICOMOS (2008). Glossaire illustré sur les formes d'altération de la pierre. International Scientific Committee for Stone (ISCS), Paris : ICOMOS et ISCS.

Altération de la pierre monumentale

Kersantite Enclos paroissial de La Martyre Grès Abbaye de Bouzonville Calcaire Eglise de La Ferté-Bernard

Altération observée sur de très nombreuses pierres en œuvre

Problématique

Variations dimensionnelles ε_s répétées suite aux apports d'eau et aux variations d'HR

Influence du gonflement - à l'échelle microscopique ? - sur le comportement mécanique ?

Influence de l'anisotropie ?

Impact des minéraux argileux sur les mécanismes de fissuration ?

Problématique

Variations dimensionnelles ε_s répétées suite aux apports d'eau et aux variations d'HR

Influence du gonflement - à l'échelle microscopique ? - sur le comportement mécanique ?

Influence de l'anisotropie ?

Impact des minéraux argileux sur les mécanismes de fissuration ?

Approche en mécanique de la rupture

Problématique

Variations dimensionnelles ε_s répétées suite aux apports d'eau et aux variations d'HR

Influence du gonflement - à l'échelle microscopique ? - sur le comportement mécanique ?

Influence de l'anisotropie ?

Impact des minéraux argileux sur les mécanismes de fissuration ?

Approche en mécanique de la rupture

Suivi continu des propriétés élastiques lors des **7 1** HR %

Paramètres d'étude

Anisotropie

Impact de l'anisotropie structurale naturelle de la pierre

Paramètres d'étude

Anisotropie

Comportement hydromécanique

↓ ↑

Evolution des propriétés mécaniques en fonction de l'état de saturation

Paramètres d'étude

Anisotropie

Comportement hydromécanique

Nature, quantité, distribution?

Minéraux argileux

Matériaux et méthodes

Molasse de Villarlod

Quartz Feldspath $\left\{ \begin{array}{c} Kaolinite\\ Glauconie\\ Smectite \end{array} \right\}$ $\approx 10\%$ Porosité totale 12,4 % R_{moy} 2,5 µm

Observation des phases de smectite

Grès de Thüringe

Propriétés mécaniques

40 mm de diamètre 80 mm de hauteur Vpl

Propriétés mécaniques

• **Tiennot M**, Mertz J-D, Bourgès A, 2019, *Influence of clay minerals nature on the hydromechanical and fracture behaviour of stones*, Rock Mechanics and Rock Engineering

• **Tiennot M**, Mertz J-D, Bourgès A, 2018, Sensitivity of kersantite toughness to moisture : influence of phyllosilicates, Environmental Earth Sciences, Stone in the Architectural Heritage : from quarry to monuments environment, exploitation, properties and durability

• **Tiennot M**, Mertz J-D, Bourgès A, 2017, *Influence of anisotropic microcracking due to swelling on the fracture toughness of a clay-bearing sandstone*, Rock Mechanics and Rock Engineering

• **Tiennot M**, Bourgès A, 2016, *Evaluation of small corebased specimens for characterization of stone deterioration*, International Journal of Rock Mechanics and Mining Sciences

• **Tiennot M**, Bourgès A, Mertz J-D, 2016, Influence of the Villarlod molasse anisotropy on cracking : advances in the comprehension of scaling mechanisms, *Proceedings of the 13th International Congress on the Deterioration and Conservation of Stone*

Ténacité K_{IC} Initiation et propagation des fissures Essai de type Semi-Circular Bending

Vp//

Propriétés mécaniques

• **Tiennot M**, Fortin J, 2020, *Moisture-induced elastic weakening and wave propagation in a clay-bearing sandstone*, Géotechnique Letters

• Yin H, Borgomano J, Wang S, **Tiennot M**, Fortin M, Guéguen Y, 2019, *Fluid substitution and shear weakening in clay-bearing sandstone at seismic frequencies*, Journal of Geophysical Research - Solid Earth

Dilatation lors des variations d'HR

Comportement mécanique à l'état initial Anisotropie naturelle

Contexte	Matériaux & Méthodes	Compor	tement mé	écanique	Surfaces de rupture
		Initial	HR	Cycles	

Fissuration à l'état initial

Fissuration de la molasse dans les trois configurations

Contexte	Matériaux & Méthodes	Compor	tement me	écanique	Surfaces de rupture
		Initial	HR	Cycles	

Fissuration à l'état initial

Fissuration de la molasse dans les trois configurations

Contexte	Matériaux & Méthodes	Compor	tement mé	écanique	Surfaces de rupture
		Initial	HR	Cycles	

Fissuration à l'état initial

Fissuration de la molasse dans les trois configurations

Contexte	Matériaux & Méthodes	Comportement mécanique			Surfaces de rupture
		Initial	HR	Cycles	

Grès

Fissuration à l'état initial

Fissuration du grès dans les trois configurations

Contexte	Matériaux & Méthodes	Comportement mécanique			Surfaces de rupture
		Initial	HR	Cycles	

Grès

Fissuration à l'état initial

Fissuration du grès dans les trois configurations

Influence des sollicitations hygriques sur le comportement de la pierre

Dilatation pour chaque HR

Comportement dimensionnel anisotrope au cours des variations d'humidité relative

oour HR 🔊

Anisotropie initiale maintenue au cours de l'humidification

ŀ	K_{IC} (MPa. \sqrt{m})	SCB_{Perp}	SCB_n	SCB_t
	Etat initial	$0.12 (\pm 0.02)$	$0.10 (\pm 0.03)$	$0.08 (\pm 0.02)$
	HR = 33% HR = 65%	$0.09 (\pm 0.01)$ $0.09 (\pm 0.01)$	$0.08 (\pm 0.00)$ $0.08 (\pm 0.00)$	$0.07 (\pm 0.01)$ $0.06 (\pm 0.03)$
	HR = 97%	0.05 (± 0.01)	0.05 (± 0.04)	0.05 (± 0.01)

Ténacité 🔰	pour	HR	7
------------	------	----	---

Anisotropie initiale maintenue au cours de l'humidification

k	K_{IC} (MPa. \sqrt{m})	SCB_{Perp}	SCB_n	SCB_t
	Etat initial	0.12 (± 0.02)	0.10 (± 0.03)	0.08 (± 0.02)
	HR = 33%	0.09 (± 0.01)	0.08 (± 0.00)	0.07 (± 0.01)
	HR = 65%	0.09 (± 0.01)	$0.08 (\pm 0.00)$	0.06 (± 0.03)
	HR = 97%	0.05 (± 0.01)	0.05 (± 0.04)	$0.05 (\pm 0.01)$

Ténacité 🏼	pour HR 🔊
------------	-----------

Anisotropie initiale maintenue au cours de l'humidification

ŀ	K_{IC} (MPa. \sqrt{m})	SCB_{Perp}	SCB_n	SCB_t
	Etat initial	0.12 (± 0.02)	$0.10 (\pm 0.03)$	0.08 (± 0.02)
	HR = 33%	$0.09(\pm 0.01)$	$0.08(\pm 0.00)$	$0.07(\pm 0.01)$
	HR = 65%	0.09 (± 0.01)	0.08 (± 0.00)	0.06 (± 0.03)
	HR = 97%	0.05 (± 0.01)	0.05 (± 0.04)	0.05 (± 0.01)

Contexte	Matériaux &	Méthodes	Comport	ement mé	canique	Surfaces de rupture
			Initial	HR	Cycles	
Molass	е	Ir	nfluer	nce d	e l'hui	midification
0,14 - 0,12 -	••••••	··●··SCE ··▲··SCE ·· ■ ··SCE	Bperp Bn St		SCB _{Perp} F a b 2S	$SCB_n \qquad SCB_t$
ité K _{ic} (MPa.√m) 80°0 - 80°0 - 1°0	••••••••••••••••••••••••••••••••••••••				N	iveaux d'HR Initial sec
0,04 - U 0,02 -		Ľ				33% 65% 97%
0 10	100 Pression de vapeu	1000 r d'eau p (Pa)	1000	00		

K_{IC} (MPa. \sqrt{m})	SCB_{Perp}	SCB_n	SCB_t
Etat initial	0.12 (± 0.02)	0.10 (± 0.03)	0.08 (± 0.02)
HR = 33%	0.09 (± 0.01)	$0.08 (\pm 0.00)$	$0.07 (\pm 0.01)$
HR = 65%	0.09 (± 0.01)	$0.08 (\pm 0.00)$	0.06 (± 0.03)
HR = 97%	0.05 (± 0.01)	0.05 (± 0.04)	0.05 (± 0.01)

Ténacité 🏼 pour HR 🛪

Perte de l'anisotropie de la ténacité à 97 % d'HR

K_{IC} (MPa. \sqrt{m})	SCB_{Perp}	SCB_n	SCB_t
Etat initial	0.30 (± 0.04)	0.17 (± 0.03)	0.17 (± 0.04)
HR = 33%	0.25 (± 0.03)	0.14 (± 0.03)	0.14 (± 0.02)
HR = 65%	0.23 (± 0.03)	0.15 (± 0.02)	0.12 (± 0.01)
HR = 97%	0.16 (± 0.01)	0.13 (± 0.02)	0.10 (± 0.03)

Ténacité 🎽 pour HR 🛪

Anisotropie apparaît au cours de l'humidification

Contexte	Matériaux	x & Méthodes	Comportemen	nt mécanique	Surfaces de rupture
			Initial H	R Cycles	
Grès			Influence	e de l'hui	midification
0,35		· • @ • •	SCBperp	SCB _{Perp} F	SCB _n SCB _t
0,3 -	•••••••••••••••••	•• • ••	SCBt		
Ē 0,25 -	····	······			
₩ 9,2			1	NI	
9 X 910,15		annen an		IN	Initial sec
. • 1,0 .		· · · · · · · · · · · · · · · · · · ·			33%
0.05 -		L			65%
					97%
10	100	1000	10000		
	Pression de vapeu	ır d'eau p (Pa)			

K_{IC} (MPa. \sqrt{m})	SCB_{Perp}	SCB_n	SCB_t
Etat initial	0.30 (± 0.04)	0.17 (± 0.03)	0.17 (± 0.04)
HR = 33%	0.25 (± 0.03)	0.14 (± 0.03)	0.14 (± 0.02)
HR = 65%	$0.23 (\pm 0.03)$	0.15 (+ 0.02)	$0.12(\pm 0.01)$
HR = 97%	0.16 (± 0.01)	0.13 (± 0.02)	0.10 (± 0.03)

Ténacité 🏼 pour HR 🛪

Anisotropie apparaît au cours de l'humidification

Contexte	Matériaux & Méthodes	Comportement mécanique			Surfaces de rupture
		Initial	HR	Cycles	

Dilatation pour chaque HR

Contexte	Matériaux & Méthodes	Comportement mécanique			Surfaces de rupture
		Initial	HR	Cycles	

Dilatation pour chaque HR

Contexte	Matériaux & Méthodes	Comportement mécanique			Surfaces de rupture
		Initial	HR	Cycles	

Influence de l'humidification

Table 2 Young moduli of Villarlod molasse in both principal directions during humidification with estimation of the decrease of the value from the initial state, and during drying

Molasse		E_{\perp}	% of loss	$E_{//}$	% of loss
Humidification	Initial	8.43 (0.39)		10.7 (0.17)	
	RH=33%	4.46 (0.17)	47 %	6.81 (0.21)	36 %
	RH=65%	4.39 (0.30)	48 %	6.22(0.38)	42 %
	RH=97%	2.61(0.20)	69 %	3.86 (0.33)	64 %

Contexte	Matériaux & Méthodes	Comportement mécanique			Surfaces de rupture
		Initial	HR	Cycles	

Influence de l'humidification

Table 3 Young moduli of Thüringer sandstone in both principal directions during humidification with estimation of the decrease of the value from the initial state, and during drying

Sandstone		E_{\perp}	% of loss	$E_{//}$	% of loss
Humidification	Initial	13.2 (0.70)		14.4 (0.94)	
	RH=33%	13.0 (0.17)	2 %	13.1(0.10)	9 %
	RH=65%	11.9(0.27)	10 %	10.6(0.50)	20 %
	RH=97%	5.20 (0.66)	61 %	6.33 (0.33)	56 %

Conséquences de cycles répétés sur le comportement mécanique

Contexte	Matériaux & Méthodes	Comportement mécanique			Surfaces de rupture
		Initial	HR	Cycles	

Variations dimensionnelles anisotropes

Dilatation hygrique T = 20 °C HR = 25 % - 97 %

Contexte	Matériaux & Méthodes	Comportement mécanique			Surfaces de rupture
		Initial	HR	Cycles	

Variations dimensionnelles anisotropes

Dilatation hygrique T = 20 °C HR = 25 % - 97 %

 $\epsilon_{\perp molasse} = 0.44 \text{ mm.m}^{-1}$

 $\epsilon_{//molasse} = 0.35 \text{ mm.m}^{-1}$

 $\epsilon_{\perp grès} = 0.68 \text{ mm.m}^{-1}$

 $\epsilon_{//grès} = 0.25 \text{ mm.m}^{-1}$

Couplage Acoustique - Dilatométrie

Couplage du comportement dimensionnel et des vitesses acoustiques au cours des variations d'humidité relative

Influence des minéraux argileux dans les processus de fissuration et d'endommagement

Observation des trajets de fissuration

Surfaces de rupture

Molasse

Observation des trajets de fissuration

Bifurcations le long du trajet au niveau des grains les plus durs

Observation des trajets de fissuration

Bifurcations le long du trajet au niveau des grains les plus durs

Désolidarisation des amas de glauconie

Conclusion et perspectives

Données expérimentales

Données expérimentales

Evolution du comportement mécanique selon la saturation et selon la structure naturelle de la pierre

Conclusions

 Comportements des 2 pierres sédimentaires différents

Conclusions

 Comportements des 2 pierres sédimentaires différents

 Comportement irréversible du grès au cours des sollicitations hygriques

Conclusions

 Comportements des 2 pierres sédimentaires différents

 Comportement irréversible du grès au cours des sollicitations hygriques

 Irréversibilité des vitesses de propagation des ondes et des propriétés élastiques du grès

Perspectives de recherche

Recherches sur l'influence des mécanismes d'hydratation sur la décohésion intragranulaire des phyllosilicates

Recherches sur les méthodes de conservation de la pierre en œuvre pour éviter la formation de plaque à la surface, en limitant le gonflement de la pierre

Merci pour votre attention