Comportement hydromécanique d'une fracture : approche expérimentale et modélisation

S. Gentier

Géosciences pour une Terre durable

BRGM/Département Géothermie

Dans une présentation un peu simpliste...

> Changement des contraintes (tectonique, exploitation humaine...)

> Changement de la pression de fluide dans les fractures (injection/ production de puits, surpressions naturelles...)

> Déformation des fractures :

- modification de la géométrie des vides
- modification de la perméabilité
- et changement de la pression de fluide
- > Déformation des fractures :
 - changement des contraintes
 - modification de la géométrie des vides
 - et changement de la perméabilité

accent sur le comportement en cisaillement

24 mai 2007

Les objets d'étude : les plans de fracture

Dispositif expérimental

Machine de cisaillement

Dispositif expérimental

Boite de cisaillement ouverte

Système de récupération du fluide par secteur:

- anneau de récupération —

- pesée de fluide

Banc d'essai :

- machine de cisaillement
- baie de commande
- rack d'acquisition

Boite de cisaillement fermée

24 mai 2007

rocheux

Comportement mécanique sous contrainte normale

- > Augmentation rapide de la rigidité K_n quand la contrainte normale augmente
- > Atteinte de la rigidité de la roche intacte quand la fermeture maximale est atteinte (ouverture initiale ? ouverture mécanique ?)
- > Hystéresis notamment pour le premier cycle de chargement et déchargement. Il décroît avec le nombre de cycles :
 - mise en place de la fracture
 - plasticité des aspérités pour certains types de roches

Comportement mécanique en cisaillement

- I : elastic linear phase with increasing of the contact area (contractancy possible)
 II : non linear phase dilatancy is mobilized with decreasing of the contact area and increasing of the normal stress on contacts
- III : shear strength peak maximal dilatancy rate with first ruptures
- IV : softening phase

progressive degradation of the asperities inducing an increase of the contact area and a progressive decrease of the dilatancy and a decrease of the normal stress on contacts

V : residual phase τ and σ quasi constant large contact area with a low dilatancy (null)

Relation entre perméabilité et comportement mécanique en cisaillement Lamontagne, 2001

Discontinuites et joints dans les massifs

Influence de la direction de cisaillement

Analyse directionnelle de l'écoulement

Gentier et al., 2000

Comment comprendre l'évolution sous contrainte normale ? Gentier, 1986

Comment comprendre l'évolution en cisaillement ?

- Recours à l'analyse des surfaces dégradées et à la modélisation des zones dégradées
- > Moulage des vides en fin de cisaillement

24 mai 2007

Expérimentation : conclusions et perspectives principales

Conclusions

- >Dispositif expérimental (réponse globale et analyse spatiale des écoulements)
- >Acquisition de données morphologiques : vides et épontes

>Résultats majeurs:

- évolution globale de la transmissivité avec les différents états de contrainte appliqués (normale et cisaillement)
- rôle de la morphologie de la fracture
- conséquence sur la répartition des écoulements dans une fracture : géométrie des chemins d'écoulement préférentiel

Perspectives

- > Améliorations (mesures locales de la pression, traçage,...)
- > Ecoulement parallèle
- Evolution vers des couplages plus complexes (chimie)
- > Régimes hydrauliques dans les fractures
- > Travaux sur différents types de fracture (généralisation des résultats acquis jusqu'à présent):
 - fracture striée
 - fracture avec remplissage

Géosciences pour une Terre durable

Modélisation

Préalable : modéliser le comportement sous contrainte normale

Modèle

- mécanique
- hydraulique
- = état initial du cisaillement

Modélisation hydromécanique : Capasso et al., 2000 contrainte normale 0.12 8.0e-5 7.0e-5 (intrinsic transmissivity, mm^3) 0.10 1.2 6.00-5 110 100 d (closure, mm) 0.08 1 5.0e-5 90 80 0.06 4.0e-5 0.8 - closure 70 intrinsic transmissivity 3.0e-5 E 60 0.04 0.6 50 2.0e-5 40 0.4 0.02 30 1.0e-5 20 0.2 0.00 0.0 10 12 13 14 15 0 2 3 0 0 mm σ_n (normal stress, MPa) 0 10 20 30 40 50 60 70 80 90 100 110 mm 700 110 110 Evolution de la géométrie 100 100 12 600 sous contrainte normale 90 90 80 80 500 10 70 70 équations de Reynolds 8 툴 ⁶⁰ 50 400 E 60 (régime laminaire) 6 300 40 40 30 30 200 20 20 100 10 10 mm° o mm smm 70 80 90 100 110 0 10 20 30 40 50 60 0 10 20 30 40 50 60 70 80 90 100 110 mm mm Géosciences pour une Terre durable Charges hydrauliques Débits

Modélisation hydromécanique en cisaillement : les zones dégradées Gentier et al., 2000

rocheux

Modélisation hydromécanique en cisaillement

Marache et al., 2002

- 1. Extension du modèle en contrainte normale : ?
- 2. Modélisation du comportement au moyen des plans d'expériences

3. Modélisation de l'évolution des vides au cours du cisaillement

Géosciences pour une Terre durable

Modélisation : conclusions et perspectives principales

Conclusions

- >Modélisation des épontes ou des vides
- >Modélisation des zones dégradées (relation avec la morphologie des épontes)

>Modélisation hydromécanique en contrainte normale :

- comportement mécanique (fermeture)
- distribution des contacts : report des contraintes en liaison avec la déformation des épontes
- hydraulique : équations de Reynolds semblent acceptables si hypothèse régime laminaire acceptable

>Modélisation hydromécanique en cisaillement :

• comportement mécanique pas satisfaisant : évolution de la géométrie des vides ?

Perspectives

- Modélisation des vides et des épontes: application du modèle Chilès et Gentier, 1992
- > Intégration dans un modèle de comportement en cisaillement
- Confrontation avec d'autres résultats expérimentaux provenant d'autres fractures

- > Amélioration du modèle mécanique :
 - modèle de Marache (2002)
 - plans d'expérience

Géosciences pour une Terre durable

Vers un couplage hydromécanique complet

> Jusqu'à présent :

- effet de la pression de fluide est considérée comme négligeable
- hydraulique : régime laminaire

Modélisation hydromécanique réellement couplée

Capasso et al., 2000

Augmentation de la transmissivité quand la pression augmente

Et en cisaillement ...?

Gentier et Pellegrino, 2003

Compréhension des phénomènes : libération partielle du cisaillement = « mini stimulation »

De l'échantillon ... à la fracture in situ !

