

Investigation of creep slip of a fracture in Callovo-Oxfordian claystone with Digital Image Correlation

Sophie Jung

Supervisors: Amade Pouya, Jean Sulem, Siavash Ghabezloo and Michel Bornert.

CIGEO (Centre Industriel de Stockage Géologique / Industrial center for geological disposal) project

GCS || σ_H

Experimental setup – Creeping behavior of a fracture in the Callovo-Oxfordian claystone

What to expect: Numerical Simulation

COx : viscoelastic isotropic material

$$\begin{split} \dot{\boldsymbol{\varepsilon}} &= \dot{\boldsymbol{\varepsilon}}^{\nu} + \dot{\boldsymbol{\varepsilon}}^{e} \\ \dot{\boldsymbol{\varepsilon}}^{\nu} &= \frac{3}{2} \alpha \xi^{\alpha - 1} \dot{\xi} \frac{\boldsymbol{S}}{\sigma_{e}} \qquad \dot{\boldsymbol{\xi}} = (a < \sigma_{e} - \sigma_{c} >^{n})^{1/\alpha} \\ \text{(For uniaxial stress} : \boldsymbol{\varepsilon}(t) = a < \sigma - \sigma_{c} >^{n} t^{\alpha}) \end{split}$$

Fracture : Non linear elasticity with Lemaitre creep law

$$\underline{\dot{u}} = \underline{\dot{u}}^{\nu} + \underline{\dot{u}}^{e}$$

$$\underline{\sigma} = \mathbf{K}(\underline{u} - \underline{u}^{\nu}) \qquad \underline{\dot{u}}_{t}^{\nu} = \alpha \xi_{t}^{\alpha - 1} \dot{\xi}_{t} \qquad \dot{\xi}_{t} = s(b_{t} < |\tau| - \tau_{c} >^{q})^{1/\alpha}$$

What to expect: Viscous deformation of the rock matrix compared to the viscous slip of the fracture

σ=8MPa

Principle of Digital Image Correlation

2.2mm

Search for homologous points between the reference image and the deformed image based on the similarity of their vicinity

150 millions pixels

Results provided by DIC

Displacement field Ux in time

Results provided by DIC

L

Under lower stress conditions

Under lower stress conditions – Data DIC

Slip from LVDT vs Actual slip from DIC

Conclusion & perspectives

- The viscosity of the rock matrix does not appear to be negligible compared to the viscous slip of the fracture
- The viscosity of the matrix + fractures is complex but the DIC allows to separate the two phenomena and thus to clarify the problem
- At very low stress the macroscopic measure with lvdt seems to show that the block is slipping while DIC show no relevant viscous slip
- Callovo-Oxfordian claystone is a very difficult rock to manipulate (very sensitive too humidity) which make the experimental capmaign very difficult (technically)
- Test with other rock
- Influence of normal stress, shear stress, joint roughness

Conclusion & perspectives

- The viscosity of the rock matrix does not appear to be negligible compared to the viscous slip of the fracture
- The viscosity of the matrix + fractures is complex but the DIC allows to separate the two phenomena and thus to clarify the problem
- At very low stress the macroscopic measure with lvdt seems to show that the block is slipping while DIC show no relevant viscous slip
- Callovo-Oxfordian claystone is a very difficult rock to manipulate (very sensitive too humidity) which make the experimental capmaign very difficult (technically)
- Test with other rock
- Influence of normal stress, shear stress, joint roughness

Merci de votre attention !

Questions ?

Comparaison des courbes log log du slip le long de la fracture en fonction du temps et des données des lvdt Utiliser les données du 05/01 : montrer le glissement, tassement le long des fractures Comparaison entre la mesure des LVDT et la meme mesure fait avec la DIC : ok (bout en plus dans la mesure physique avec les LVDT)

Figure 2: values of variance on mean as a function of the position of travel stage for the ● top left, ●bottom left,
●bottom right, ●top right regions of interest

Préparation des échantillons

- Ouvrir et découper les blocs dans les carotte cylindrique fournit par l'ANDRA
- Polir les surfaces qui seront analysé par correlation d'images
- Polir les surfaces cisaillées

Préparation des surfaces à cisailler

Analyse faite par Tortoise

- Des différences qualitatives entre ces 2 surfaces existe. Une rugosité de l'ordre d'une centaines de microns est mise en évidence sur la surface poncé, ces motifs ne sont pas présents sur les surfaces in-situ
- La longueur caractéristique ξ mesuré par Tortoise, est estimé au delà de ces motifs. Les résultats sont résumés dans le slide suivant.
- On vise ξ = 15 ou 16 μm

-650

-675

-700

-725

-750

-775

-800

-825

-850

Campagne de cisaillement direct

	L'état de l'interface	Contrainte normale maximale	Paramètres de rigidité	Paramètres de résistance
Essais 1	Polissage au papier de verre P500.	8.3MPa	K _n =24.4MPa/mm K _t =5.8MPa/mm	С=0.11 МРа, ф=19.4°
Essais 2 &3 Surface polie au P40 Après un fluage de 7 jours sous σ _N =4.3MPa τ=1.2MPa.	Les débris de roche à l'interface ne sont pas éliminés.	7.1MPa	K _t =18.5MPa/mm	C=0.06МРа, ф=27.4°
	Les débris de roche à l'interface dus au fluage sont éliminés .	7.1MPa	K _t =23.2MPa/mm	C=0.15MPa, φ=27.0°
Essais 4	Polissage au papier de verre P40.	7.1MPa	K _n =23.1MPa/mm K _t =21.2MPa/mm	C=0.38МРа, ф=27.2°

Results provided by DIC

CIGEO (Centre Industriel de Stockage Géologique / Industrial center for geological disposal) project

