



Laboratoire de mécanique, multiphysique, multiéchelle

# Contribution of Micromechanics and Machine-Learning to multi-scale modeling of heterogeneous materials

#### Jing Xue, Jianfu Shao<sup>\*</sup>, Wanqing Shen, Nicolas Burlion 05/05/2022







- 1. Background and motivation
- 2. ANN based models
- 3. Identification of constituents strength properties
- 4. Estimation of effective elastic properties
- 5. Conclusions and ongoing work



#### **1. Background and motivation**



Micro-structures



Macroscopic properties

Analytical homogenization methods; simplification of microstructure

Machine-learning based methods; dataset construction

Numerical upscaling methods; high computing cost



3



### **1. Background and motivation**

#### > Three key issues:

- ✓ Identification of constituents properties
  - **O Direct microscopic tests, not always possible, expansive**
  - ML solutions, macro to micro, use of conventional data such as  $R_c$  and  $R_t$
- ✓ Prediction of macroscopic properties and their uncertainty
  - $\circ~$  Analytical micromechanical models, simplified RVE
  - **o** Stochastic ML models, complex microstructures
- ✓ Improvement of materials performance (3D printing)



## 1. Main machine learning algorithms/techniques



#### 2. ANN models





#### **ANN models:**

- o one input, one output, one or several hidden layers
- o a specific number of neurons in each layer
- weighted summation of inputs

• **producing outputs**, with appropriate activation functions;  $\sigma(x) = \tanh(x)$ ;  $\sigma(x) = \max(0, x)$  (ReLU),  $\sigma(x) = \frac{1}{1 + \exp(-x)}$  (Sigmoid),  $\sigma(x) = In(1 + \exp x)$  (Softplus),  $\sigma(x) = \sigma$  (linear) etc.







✓ Learn and build nonlinear and complex relationships
✓ Infer unknown relationships between unknown data

Test dataset





### **3.1 Analytical strength criterion and problem statement**



RVE of heterogeneous materials

#### Drucker-Prager (DP) criterion for solid phase:

 $F^s = \tilde{\sigma}_d + \mathbf{T}(\tilde{\sigma}_m - \mathbf{h}) \le 0$ 

- *T*, **frictional coefficient** of the solid phase at the nanometric scale
- *h*, hydrostatic tensile strength of the solid phase at the nanometric scale.

$$\frac{\text{Macroscopic strength criterion:}}{F = \frac{A + \frac{2B\rho}{3}}{1 + \frac{3\rho}{2} - \frac{5\rho}{6\left(\frac{A}{B} + 1\right)}}\Sigma_d^2 + B\Sigma_m^2 + C\Sigma_m - \left(D + \frac{4BD + C^2}{6A}\rho\right) = 0$$

**Uniaxial compression or tension:**  $\Sigma_d = R, \Sigma_m = (-1/3)R$  $\left(\frac{A + \frac{2B\rho}{3}}{1 + \frac{3\rho}{2} - \frac{5\rho}{6\left(\frac{A}{2} + 1\right)}} + \frac{B}{9}\right)R^2 - \frac{C}{3}R - \left(D + \frac{4BD + C^2}{6A}\rho\right) = 0$  $A = \frac{1 + \frac{2f}{3}}{T^2} \left( \frac{6T^2 - 13f - 6}{4T^2 - 12f - 9} \phi + 1 \right), B = \frac{\frac{3}{2} + f}{T^2} \phi + \frac{3f}{2T^2} - 1,$  $C = 2(1-f)(1-\phi)h, D = (1-f)^2(1-\phi)^2h^2$  $\rho$  volume fraction of inclusions,  $\phi$  large porosity, f small porosity

 $F(T, h, \rho, \phi, f) \iff R_c, R_t$ 



#### **3.2 Sensitivity analysis and simplified analytical strength criterion**





 $0.7 \cdot$ First-order Total-order 0.6 0.5 Sensitivity index (-) 0.4 **Fotal-order** is the smallest 0.3 0.2 0.1 0.0 Т Input parameters

Simplified RVE of material

 $\left(\frac{A' + \frac{2B'\rho}{3}}{1 + \frac{3\rho}{2} - \frac{5\rho}{6\left(\frac{A'}{B'} + 1\right)}} + \frac{B'}{9}\right)R^2 - \frac{C'}{3}R - \left(D' + \frac{4B'D' + C'^2}{6A'}\rho\right) = 0$   $A' = \frac{1}{T'^2}\left(\frac{6T'^2 - 6}{4T'^2 - 9}\phi + 1\right), B' = \frac{3}{2T'^2}\phi - 1,$   $C' = 2(1 - \phi)h', D' = (1 - \phi)^2h'^2.$ T', frictional coefficient of the solid phase at the microscopic scale

h', hydrostatic tensile strength of the solid phase at the microscopic scale

 $T', h', \rho, \phi \iff R_c, R_t$ 



First-order and total-order index

#### 3.3 An ANN model for predicting $T^\prime$ and $h^\prime$





#### 4.1 Analytical bounds and estimates of elastic properties







11

#### 4.1 Analytical bounds and estimates of elastic properties





Only pores



12

#### 4.2 An ANN based model





#### **4.3 ANN model assessment**

Train

0.30

Data number

0.40-







Train

4.0



#### 5. Conclusions and ongoing work



#### **1.** Conclusions

- ANN based models are able to accurately not only identify microscopic properties, but also estimate macroscopic properties of complex heterogeneous materials;
- Combination of ML based and micromechanical models provides a powerful tool to understand relationships between micro-structures and macroscopic properties.

#### **2.** Ongoing studies

- Enrichment of dataset from direct simulations of complex micro-structures and laboratory tests with controlled micro-structures, estimation of macroscopic strength properties and their uncertainty;
- Determination of stress-strain relations directly by ML based models;
- Combination with 3D printing technology, smart materials design for specific requirements.





# \_aMCU3E

Laboratoire de mécanique, multiphysique, multiéchelle

# Thank you for your attention

