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Opalinus Clay
PARAMETRES RANGE MEAN VALUE

Bulk density, sat. (g cm-3) 2.40 – 2.53 2.47
Water content (wt%) 3.0 – 8.1 5.6
Porosity (%) 7 –18 12
Hydraulic conductivity (ms-1) 1E-14 – 1E-12 2E-13

Thermal Conductivity (Wm-1K-1) 1.0 – 3.1 2.1
Heat capacity (J Kg-1 K-1) 970 – 1340 1155

Total dissolved solids in pore water (g/l) 5 - 20 12

Uniaxial Compressive Strength (MPa) 8 – 25 10
Young’s Modulus (MPa) 6000 – 12000 9000
Poisson’s ratio 0.25 – 0.33 0.29
Shear modulus - 1200

Key parameters
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• Excavation methods 

• Unloading fractures and bedding parallel slip

• Small scale structural mapping

• Role of the anisotropy

• Borehole deformation and borehole closure
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Excavation by road header
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Excavation methodsExcavation methods



Excavation by pneumatic hammer CFMR, Ecole des Mines Paris, 8.12.05



EDZ unloading fractures, niche side wall



Bedding parallel slip on reactivated bedding planes



EDZ unloading fractures on side wallsEDZ unloading fractures on side walls
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bedding is inclined
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Bedding parallel slip at roof and bottomBedding parallel slip at roof and bottom

3σ3 – σ1 = 2 MPa > 1 MPa 
calculated tangential stress > 

compressive strength of bedding plane



Gypsum spots on fracture surfaces

Small scale structural mappingSmall scale structural mapping
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Gypsum spots, 
interconnected
fracture network

No gypsum spots, 
isolated fractures

Small scale mapping, line countings

Frequency of fractures 
along side walls of 6 
niches, which were 
excavated into tunnel wall



Role of anisotropyRole of anisotropy
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Mechanical breakouts
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Borehole deformationBorehole deformation
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Borhole deformation: Buckling and 
breaking apart of bedding planes
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Epoxy resin impregnated overcore

Borehole closureBorehole closure
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Original borehole

Bedding trace
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Buckling / kinking of bedding
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Detail of kink band: fault 
zone with extension splays
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„Borehole closure“ due to bedding kinking 
combined with displacement along brittle 

fault zones. 

Same process may be true for tunnel 
closure.



Tectonic kinking (deformation bands)
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• Pneumatic testing, EDZ air permeability

• Hydraulic testing, EDZ transmissivity

• Self-sealing, observations

• Self-sealing, transmissivity evolution

CFMR, Ecole des Mines Paris, 8.12.05



N2

3-way valve

pressure
reduction
 valve

Principle of pneumatic testing
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•High k: injection tests

•Low k: vacuum withdrawal tests
(to avoid any artificial fracturing)



Mont Terri EH Self Healing
Situation of Boreholes and
Permeability Profiles

Pneumatic Testing
Permeability Profiles

BEH-11

Pneumatic testing: permeability profiles, 
after excavation
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Principle of hydraulic injection testing
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Self-sealingSelf-sealing

After repository closure, the EDZ will be slowly saturated 
(transient phase) by pore water or by water from a 
bounding aquifer.

The aim of this experiment is to evaluate if the interaction 
of this water with clay could lead to a self-sealing of EDZ 
fractures by processes such as swelling and creep.
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Self-sealing observations

Fluoresceine Wet zone

Oxidation spots
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Mont Terri Project

Principle of pore pressure
measurements
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DM-Iberia-modelling



Mont Terri Project

Pore water pressure evolution, PFC modelling

Itasca-modelling
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The EDZ model for hydro-mechanical coupling

Bedding parallel slip 
where  compressive 
strength of bedding is 
exceeded

Unloading joints where 
uniaxial compressive strength 
is exceeded

Dynamic pore pressure 
increase during excavation 
(high tangential stresses, low 
hydraulic conductivities).

Pressure drops to zero at 
formation of EDZ fractures

Expected pore pressure 
reduction during excavation 
(low tangential stresses)

σ1

σ3

After D. Martin et 
al., TR 2000-01



P. Bossart

Mont Terri Project

• Conclusion (1 of 3)

EDZ mechanisms, microstructures

• Deformation in the excavation damaged zone (EDZ): Stress induced
deformations and mechanical induced deformations, the latter due to a 
pronounced bedding anisotropy.

• Reason of discontinuity formation in EDZ: generally UCS is exceeded. 
Special case: CS of discontinuities is exceeded. Reactivation of bedding-
and tectonic-planes.

• EDZ structures: extensile brittle fractures (unloading joints) bedding parallel 
slip.

• Borehole-deformation and -closure: buckling, kinking. Conjugate brittle fault 
zones, where material is displaced into opening. Cataclastic flow.
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Mont Terri Project

• Conclusion (2 of 3)

EDZ pneumatic and hydrogeological testing & self-sealing

• Methodology: Pneumatic testing (vacuum tests or air injection tests), 
followed by classical hydrotesting (constant head!). May be combined with 
geoelectrical resistivity measurements and seismic tomography.

• Determination of EDZ air permeability. Extent of EDZ can clearly be traced, 
where permeability is increased by 2-4 orders of magnitude.

• Determination of EDZ pore water transmissivity: classical hydrotesting, 
careful saturation of fracture network, selection of artificial pore water. 
Means in the order of 2E-8 m2/s, max. transmissivities of 1E-6 m2/s.

• Self-sealing: Transmissivity decrease: 2 orders of magnitude during a period 
of 800 days. Processes: disjoining of fabric, chemico-osmotic effects, 
induced creep (?), chemical precipitation reactions (gypsum spots).
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Mont Terri Project

• Conclusion (3 of 3)

EDZ hydro-mechanical coupling 

• Requirement: piezometers which measure pore pressure (and not borehole 
deformations!)

• Deformations: elastic responses ahead in the frontal wall. Clear plastic 
responses when frontal wall passes piezometers in the sidewalls.

• Coupling: pore pressure changes due to stress redistributions. The lower 
the hydraulic conductivity the higher the pressure changes.

• Tunnel stability is a function of wall saturation. Tunnel ventilation is 
necessary in order to maintain de-saturation. Recovery of pore pressures 
results in unstable tunnel (mainly bedding parallel slip). Application of 
effective stress concepts.


