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Background

Introduction
* Lithology Easily assessed by spatial
Predisposing factors  Faults analysis techniques
: e Land use Ayalew et al. 2005
Landslide & )
- * Rainfall Difficult to estimate at a
Triggering factors * Snowmelt regional scale
« Earthquakes (Griffiths 2014)
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Background

Objectives
Triggering factors: Material
Rainfall l Induced deformation
: 2
Approaches for slope Limit equnlb‘rlum method (LEM)

stability analysis:

Safety factor | <—————

Methodology: Phase-field Method (PFM)

Regularized crack topology:

Arzj dAzf v4(d,vd) dV
I Q

= Predict not only crack initiation but also the crack propagation path

= Deal with merging and branching of multiple cracks;

= Easy to incorporate the multi-field physics

weakening )  Crack evolution

Numerical modelling, progressive
deformation and instability
Finite element method (FEM)
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Figure —Regularized crack topology
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Phase-field formulations

Regularized crack fields

Two independent variables d¢ and d* to approximate the crack surface area:

QQt 00t

(a)

(b)

The total crack surface density : y4(d,Vd) =

o _ ........... -_._._._(d_t,)i___l_d _________
- Tensile crack density _a
' 21,4 2

The energy dissipated by cracks : D(ds,db) = J [gtyi(at,vd®) + gSy5(ds,vdS)] av
()




Phase-field formulations

Constitutive relations of undamaged porous media
Poroelastic model for the undamaged material (coussy, 2010) :

do® = de®° — bS,,dp,,I
dpw = My [—bswds,, + (dpﬂ)l

w

» The capillary pressure (v, = puim = 0): » The water saturation degree (van Genuchten, 1980) :
Pc = —DPw Sw =35+ Se(]- - Sr)

(2]

The total energy functional of partially saturated cracked material

E(ge,m,, dt,d) :U ¢(s,mw,dt,d5)dv]+U D(dt, d*) dV]
Q Q

» The extended Bishop’s effective stress (Bishop, 1959) : -

S =
do?® = de® + bS,,dp,,I = C*°:de ¢

stored energy cracking dissipation
l/)({:', my, dt' dS) = lljeff (8' dt: dS) + lpfluids (81 mw)
Skeleton deformation Fluid mass change
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Phase-field formulations

Stored energy for partially saturated media with cracks

O The stored elastic energy of porous medium:

Yers(g,d,d%) = g(d) WP(e) J+ g@) | Wl(e)

N\

1 1
W_{_’(g):io'g’_;g W_b(E):EO'E:E
Tensile crack driving energy Shear crack driving energy

» The degradation function (Miehe et al. 2010) :
9(d®) = (1 -d*y?
» The Decomposition of effective stress tensors :

3
af’_F = Z(Ja)ina QR n,
a=1

L The energy due to fluid mass change :

Vrmias(&my, d5, d®) = Yrpias(€,my,) =

2
1 m
E Myw bSWEV o ; .
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Phase-field formulations

(3, myy, y, df, d°) = E (1, my, d,dS) — Poy =

Governing equations for phase-field variables

dt s
—g¢(d* — ¢ [T — 1 diV(th)] =0 —ge(dS WP - g T~ [ div(VdS)| =0
RO SR | s RS N
! 1 : | 1 o3 —0; o3 +o0 ;
. We — . o€ 1 . S — — 1
i 2= ey Ty ane ]
Ht = max WE HS = max WS
telo,t] telo,t]
dt ds
—2(1 —dHH?t - gt [T — 1 diV(th)] =0 21 -d°>)H>—-g; [T — 1 diV(VdS)] =0
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Phase-field formulations

(3, hy,, my, db, d5) = E(it, y,, g, db,dS) — Ppy = 0

Hydro-mechanics coupling functions for partially saturated medium

my,
Pw — Pwo = M,, _bw‘c—'I +
Pw

div(o) + F=0
Darcy’s law and mass (@) +f
conservation
1 Ik 00— 0= (Cb(dt: ds): € — bSW(pW - pWO)I
bSy &, + Mpw = diV(pr — ng)
Uw

Water pressure field

Effects of phase field on hydraulic parameters:

= Permeability: k,,(d?) = k9 exp(d?)

= Porosity: ¢(dt) = ¢° + (1 — ¢°) dt
cb(at,d®)

Mechanical field

2 o (ot t ]
= Scalar parameter; —— = SLL=0(@] | 5ib(d) _ ey 95, Phase field
M(d?) Kq Ky Dc Py
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Numerical Modeling

Analysis of rainfall induced landslides

Hydro-mechanical parameters:

A U KW ¢ b kpl
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Phase-field parameters:

Critical energy gt Critical energy g; Crack length scale [

224 N/m 364 N/m 0.25m
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Figure - Boundary conditions
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Figure - Initial distribution of pore pressure
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Numerical Modeling

Analysis of rainfall induced landslides

Pore Pressure [KPa]
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Pore Pressure [KPa]
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Figure - Distribution of pore pressure without damage Figure - Distribution of pore pressure when slope failure occurs
(after 66h) (after 65.5h)

Rainfall infiltration:

= Increment of underground water table

= Partially saturated === fully saturated
(toe of the slope)

Pore pressure «= cracks
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Numerical Modeling

Analysis of rainfall induced landslides
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Figure - Distribution of global damage

= Onset of cracks: Around the toe of the slope
= Cracks path: Toe of slope === top of slope

Figure - Displacement vector
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Numerical Modeling

Analysis of rainfall induced landslides

Compressive- shear cracks

Compressive-shear damage
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Numerical Modeling

Analysis of rainfall induced landslides

| 20m |

Global damage
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Figure — Distribution of pre-crack
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= Growth of cracks
= Two-step failure pattern

Figure - Distribution of global damage
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Conclusions and Perspectives

Conclusions
= The proposed method is able to describe the initiation and propagation of localized damage zones and cracks due to rainfall.
= |t was found that the shear cracking was the principal failure mechanism of landslides.

= The existence of initial weak zones and fractures enhances the failure process and also affects the cracking pattern

Perspectives

= Application the proposed numerical method into analysis of reality landslides;
= Considering the material in a slope as a heterogeneous material;
» Proposing a time-dependent phase-field method to simulate the long-term behavior of the slope;

» Taking into account hydrodynamic effects
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