IMPACT OF EXPERIMENTAL METHODS IN THE DIFFERENCES OBSERVED BETWEEN STATIC AND DYNAMIC MODULI

E. BEMER, N. DUBOS-SALLÉE, V. POITRINEAU

© | 2024 IFPEN

GEOLOGICAL MODEL (FROM SURFACE TO BASEMENT)

Outcome of the geologists' and modelers' hard work: 3D numerical model with **multiple facies** to be populated with **geomechanical properties**

MATERIAL AVAILABLE TO THE EXPERIMENTER: **A FEW SAMPLES**

No choice but to link **static** elastic moduli to **dynamic** elastic moduli available at different scales

CAUSES FOR DIFFERENCES BETWEEN **DYNAMIC** (**\scalebox**) AND **STATIC** (**\scalebox**) MODULI OF ROCKS (Fjær, 2019)

Experimental conditions	Studied rock	6 Measurement methods
 Strain rate squirt flow, scattering 	Cracks, heterogeneities	 Focus on laboratory scale Study of outcrop limestones
 Drainage conditions usually drained undrained 	Permeability	
	3 Heterogeneities (probed rock volume)	ELASTIC MODULI MODULI
	4 Anisotropy	ATT - Co
 5 Strain amplitude 1 non-elastic processes 	Cracks/grain contacts	

MEASUREMENT OF **DYNAMIC ELASTIC MODULI** SPECIFICITIES OF THE FOLLOWED APPROACH

- Two types of velocity measurements
 - First break picking (FB)

$$V = \frac{L}{\Delta t}$$

Phase spectral ratio method (PH): comparison of the sample signal with a reference signal recorded in an aluminum sample

$$\Delta \varphi = 2\pi f \left(\frac{L}{V(f)} - \frac{L_o}{V_o} \right)$$

(Rasolofosaon et al., 2008) (Bemer et al., 2019)

Homogenized velocities provided by phase velocity measurement more representative of the sample macroscopic behavior

⁽Dubos-Sallée et al., 2016)

Path dispersion (Cadoret, 1993)

- Fluid substitution technique
 - Measurement of velocities for various saturating fluids of different bulk moduli

MEASUREMENT OF DYNAMIC ELASTIC MODULI INTERPRETATION OF THE EXPERIMENTAL DATA

BIOT-GASSMANN'S EQUATION

$$K_{u} = K_{d} \left[1 + \frac{\left(1 - \frac{K_{d}}{K_{s}}\right)^{2}}{\left(1 - \phi\right)\frac{K_{d}}{K_{s}} - \left(\frac{K_{d}}{K_{s}}\right)^{2} + \phi\frac{K_{d}}{K_{fl}}} \right]$$

 $G_u = G_d = G$

Interpretation

- K_d and K_s estimated from inverse analysis
- G = mean value for the 5 liquids

Quality check

- Comparison of *G* and $G_{Lab/N} \approx G_{dry}$ and of K_d and $K_{Lab/N} \approx K_{dry}$ → dispersion?
- Consistency of K_s with sample mineralogy: $K_{calcite} = 76.8 \text{ GPa} (\text{Mavko et al., 2009})$

MEASUREMENT OF DYNAMIC ELASTIC MODULI INTERPRETATION OF THE EXPERIMENTAL DATA

First break velocities around 10% higher than phase velocities **for this sample**

Dynamic elastic moduli derived from first break velocities significantly higher (around 20% for K_d and 10% for *G* for Euville limestone)

Deviation between first break and phase velocities representative of the **rock intrinsic heterogeneity**

(Dubos-Sallée et al., 2016)

8

CAUSES FOR DIFFERENCES BETWEEN **DYNAMIC** (**\scalebox**) AND **STATIC** (**\scalebox**) MODULI OF ROCKS (Fjær, 2019)

Experimental conditions	Studied rock	Measurement methods
 Strain rate squirt flow, scattering 	Cracks, heterogeneities	 Focus on laboratory scale Study of outcrop limestones
 Drainage conditions usually drained undrained 	Permeability	Euville limestone
	3 Heterogeneities (probed rock volume)	DYNAMIC ELASTIC MODULI STATIC ELASTIC MODULI
	4 Anisotropy	Phase versus first break
 5 Strain amplitude 1 non-elastic processes 	Cracks/grain contacts	velocities

MEASUREMENT OF STATIC ELASTIC MODULI TRIAXIAL CELL EQUIPMENT

Standard approach

 Static elastic moduli measured in controlled drained conditions during an unloading phase carried out at constant confining pressure

$$E_d = \frac{\Delta \sigma_a}{\Delta \epsilon_a} \qquad \frac{E_d}{\nu_d} = -\frac{\Delta \sigma_a}{\Delta \epsilon_r}$$

- Measurement system
 - Internal stress sensor (full Wheatstone bridge) \rightarrow deviatoric stress ($q = \sigma_a p_c$)
 - 3 pressure transducers \rightarrow confining pressure (p_c) , upstream (p_p^{up}) and downstream (p_p^{down}) pore pressure
 - 3 axial and 3 radial strain gauges \rightarrow local axial strain (ϵ_a^l) and local radial strain (ϵ_r^l)
 - 4 axial LVDT \rightarrow semi-local axial strain (ϵ_a^{sl})

Include end platen deformation

and interface effects

Upstream pore pressure $(p_n^{up} \text{ controlled})$

Downstream

pore pressure

 $(p_n^{down} \text{ measured})$

LVDT

 (ϵ_a^{sl})

MEASUREMENT OF STATIC ELASTIC MODULI FOCUS ON THE INTERFACE EFFECTS

MEASUREMENT OF STATIC ELASTIC MODULI FOCUS ON THE INTERFACE EFFECTS

Truly homogeneous samples

PVC

Dural

- Another Euville sample with lower porosity
- Two other limestone samples to extend the porosity range
 - Lavoux limestone
 - Vilhonneur limestone

Elastic moduli derived from strain gauges preferentially considered

CAUSES FOR DIFFERENCES BETWEEN **DYNAMIC** (**\scalebox**) AND **STATIC** (**\scalebox**) MODULI OF ROCKS (Fjær, 2019)

Experimental conditions	Studied rock	Measurement methods
 Strain rate squirt flow, scattering 	Cracks, heterogeneities	 Focus on laboratory scale Study of outcrop limestones
 Drainage conditions usually drained undrained 	Permeability	Euville limestone
	3 Heterogeneities (probed rock volume)	ELASTIC MODULI MODULI
	4 Anisotropy	Phase versus first break preferred to
 5 Strain amplitude \$\overline{1}\$ non-elastic processes 	Cracks/grain contacts	velocities LVDT

RECONCILIATION?

Homogenized dynamic elastic moduli derived from **phase velocities** consistent with static elastic moduli derived from **strain gauges**

CONCLUSIONS AND PROSPECTS

Phase velocity measurements and fluid substitution technique provide equivalent static elastic moduli when there is no dispersion effect...

• What about carbonate rocks with cracks?

Prospects: Measurements of static elastic moduli

Innovating for energy

Find us on:

- www.ifpenergiesnouvelles.com
- **@**IFPENinnovation

EXTENSION OF BIOT-GASSMANN'S EQUATION TO CONSIDER THE UNRELAXED REGIME

Unrelaxed response (Mavko and Jizba, 1991)

$$K_{Lab} = K_{uf} \left[1 + \frac{\left(1 - \frac{K_{uf}}{K_s}\right)^2}{\left(1 - \phi_{nc}\right)\frac{K_{uf}}{K_s} - \left(\frac{K_{uf}}{K_s}\right)^2 + \phi_{nc}\frac{K_{uf}}{K_{fl}}} \right] \qquad \mu_{Lab} = \mu_{uf}$$

 K_{uf} = unrelaxed frame bulk modulus μ_{uf} = unrelaxed frame shear modulus K_s = solid matrix bulk modulus K_{fl} = fluid bulk modulus ϕ_{nc} = non-compliant porosity K_h = frame bulk modulus without ϕ_c ϕ_c = compliant porosity

$$\frac{1}{K_{uf}(p_c')} = \frac{1}{K_h} + \frac{1}{\frac{1}{\frac{1}{K_{dry}(p_c')} - \frac{1}{K_h}} + \frac{1}{\left(\frac{1}{K_{fl}} - \frac{1}{K_s}\right)} \phi_c(p_c')}$$
$$\frac{1}{\mu_{uf}(p_c')} - \frac{1}{\mu_{dry}(p_c')} = \frac{4}{15} \left(\frac{1}{K_{uf}(p_c')} - \frac{1}{K_{dry}(p_c')}\right)$$

(Gurevich et al., 2009)

