The rock-mechanical behavior of Opalinus Clay – synopsis of 20 years of experience at the Mont Terri rock laboratory

CFMR Paris, March 17, 2016

D. Jaeggi, C. Nussbaum, P. Bossart, swisstopo
1. Introduction

2. Sampling and rock mechanical testing

3. In-situ stress testing

4. Excavation damaged zone (EDZ)

5. THM-modeling

6. Conclusions
The 16 Partners of the Mont Terri Project

- **Bundesamt für Landestopografie (swisstopo)**
- **Nationale Genossenschaft für die Lagerung von radioaktivem Abfall (NAGRA)**
- **Eidgenössisches Nuklearsicherheitsinspektorat (ENSI)**
- **Agence Nationale pour la Gestion des Déchets Radioactifs (ANDRA)**
- **Institut de Protection et de Sûreté Nucléaire (IRSN)**
- **Bundesanstalt für Geowissenschaften und Rohstoffe (BGR)**
- **Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbh**
- **Empresa Nacional de Residuos Radiactivos, S.A. (ENRESA)**
- **Studiecentrum voor Kernenergie, Mol (SCK•CEN)**
- **Federaal Agentschap voor Nucleaire Controle (FANC)**
- **Japan Atomic Energy Agency (JAEA)**
- **Obayashi Corporation (OBAYASHI)**
- **Central Research Institute of Electric Power Industry (CRIEPI)**
- **Nuclear Waste Management Organisation, Toronto (NWMO)**
- **Department of Energy, Washington DC (U.S. DOE)**
- **Chevron Energy Technology Company, Houston**

Additional Organizations:
- **Japan Atomic Energy Agency (JAEA)**
- **Obayashi Corporation (OBAYASHI)**
- **Central Research Institute of Electric Power Industry (CRIEPI)**
- **Nuclear Waste Management Organisation, Toronto (NWMO)**
- **Department of Energy, Washington DC (U.S. DOE)**
- **Chevron Energy Technology Company, Houston**
The Mont Terri rock laboratory – location and situation
138 in-situ experiments since 1996
• Experiments are linked to repository evolution
• Mechanical experiments important for construction and emplacement phase
1. Introduction

2. Sampling and rock mechanical testing

3. In-situ stress testing

4. Excavation damaged zone (EDZ)

5. THM-modeling

6. Conclusions
Specimen extraction and sampling strategy

Effects on the clay specimen:
- Stress relief
- Desiccation
- Increased temperature (frictional)
- Mechanical damage, excess pore water pressure

Countermeasures:
- Reduce drilling speed, adapt technique (triple core, air flushing)
- Reduce time of exposure, immediate conditioning
- Use larger diameters

Wild et al. (2015)
Specimen conditioning

Desiccation leads to:
- Increase of strength
- Desiccation cracks + discing

Adapted conditioning:
- Triple core drilling
- Determination of water content on-site
- Immediate sealing in aluminum foil
- Saturation of samples to constant suction in lab

Bossart & Thury (2008)

CT-scan

- Peak strength
- Residual strength

Water content [weight %]

Strength [MPa]
Opalinus Clay shares many similarities with both soils and rocks:

- strong non-linearity (soil)
- micro-acoustic events (brittle rock)
- strong dilatancy for $\sigma_3 < 1\text{MPa}$ (soil)
- CI independent of σ_3 (brittle rock)

The influence of suction

- Substantial influence of suction on strength
- Similarities with soils: “shrinkage limit” equals the “air-entry value”
- Strength loss due to cyclic variations of relative humidity

Wild et al. (2015)
State-dependent anisotropy

- Effect of orientation to anisotropy higher at higher suction
- UCS versus water content shows steeper slope for s-samples
- Clear influence of anisotropy

Wild et al. (2015)
Impact of facies on rock stiffness

Clear difference between homogeneous **shaly facies** and **sandy facies**

- Scatter of data
- Absolute values
- Slope steeper for sandy facies (P-samples)
Challenges for rock-mechanical testing of Opalinus Clay

- Rock anisotropy
- Significant heterogeneity of sandy facies
- Scale dependency, REV
- Effect of sample size
- Sample extraction and conditioning (suction, damage)
- Few data out of the sandy facies
Contents

1. Introduction
2. Sampling and rock mechanical testing
3. In-situ stress testing
4. Excavation damaged zone (EDZ)
5. THM-modeling
6. Conclusions
In-situ stress testing at Mont Terri

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Borehole</th>
<th>Method</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determination of stress</td>
<td>BDS-3</td>
<td>Overcoring</td>
<td>Hesser (2014)</td>
</tr>
<tr>
<td>In situ stress, overcoring</td>
<td>BIS-D1 –</td>
<td>Overcoring</td>
<td>Heusermann et al., (2014)</td>
</tr>
<tr>
<td>Determination of stress</td>
<td>BDS-1 and BDS-2</td>
<td>Hydraulic stimulation</td>
<td>Rummel et al. (2012)</td>
</tr>
<tr>
<td>Determination of stress</td>
<td>BDS-2 and BDS-4</td>
<td>Hydraulic stimulation</td>
<td>Enachescu (2011)</td>
</tr>
<tr>
<td>Determination of stress</td>
<td>BDS-1</td>
<td>Laboratory analyses using RACOS®-tests</td>
<td>Jahns (2011)</td>
</tr>
<tr>
<td>In situ stress, hydraulic stimulation</td>
<td>BIS-C1 and BIS-C2</td>
<td>Hydraulic stimulation</td>
<td>Evans et al. (1999)</td>
</tr>
</tbody>
</table>
In-situ stress measurements methods

- **Hydraulic methods** (provide only direct measure of stress)
 - Hydraulic Testing on Pre-existing Fractures (HTPF)
 - Hydraulic stimulation

- **Borehole failure methods** (useful in high-stress situations)
 - Borehole breakouts
 - Drilling-induced tension fractures

- **Stress relief methods** (measure strain, not stress)
 - Overcoring (various types of gauges)
 - Borehole slotter
 - Under-excavation technique

- Earthquake fault plane solutions (large-scale stress)

(Methods applied at Mont Terri are highlighted in red)
Results from 33 analyzed tests

Orientations of principal stresses

Magnitudes of principal stresses

Properties of tests

<table>
<thead>
<tr>
<th></th>
<th>σ_1</th>
<th>σ_2</th>
<th>σ_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep borehole >20 m</td>
<td>●</td>
<td>△</td>
<td>◆</td>
</tr>
<tr>
<td>Competent rock (limestone)</td>
<td>●</td>
<td>△</td>
<td>◆</td>
</tr>
<tr>
<td>Rock lab, incompetent rock (shale)</td>
<td>●</td>
<td>△</td>
<td>◆</td>
</tr>
</tbody>
</table>

In-situ stress testing across décollement

- BDS-5 drilled across the main décollement
- Opalinus Clay thrust onto upper Jurassic limestones
- Opalinus Clay strongly tectonized

→ Decoupling across décollement?

- 11 hydraulic stimulation tests
- 10 impression packer tests
- pre- and post-frac ABI

Hydraulic stimulation data of BDS-5

Stress components

<table>
<thead>
<tr>
<th>Stress direction (footwall)</th>
<th>Magnitude [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_H</td>
<td>8.3</td>
</tr>
<tr>
<td>S_h</td>
<td>4.3</td>
</tr>
<tr>
<td>S_v</td>
<td>2.7</td>
</tr>
</tbody>
</table>

S_H: Maximum horizontal stress [MPa]

S_h: Minimum horizontal stress [MPa]

Not interpreted, since opening of pre-existing features

Trends for the foot wall domain

Main décollement

Mont Terri tunnel BDS-5

0

30

60

90

120

150

180

200

230

260

290

320

350

380

410

440

470

500

530

560

590

620

0

45

90

135

180

Meters above sea level

Sv

Sh

S_H

Depth [m]

Sv

Sh

S_H
Controls on in-situ stress and mechanisms

- Excavation controlled stresses
 - Primary and secondary stress field
 - 2-3 tunnel diameters
- Depth controlled stresses
 - Topography important at shallow levels
 - Tectonic bench-vice at deeper levels
- Lithology controlled stresses
 - Rock competence (UCS, elastic parameters)
 - Backbone and stress transfer in stiff rocks

<table>
<thead>
<tr>
<th>Proposed stress tensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_1 6-7 MPa 210/70° subvertical</td>
</tr>
<tr>
<td>$\sigma_{2/3}$ 4-5 MPa 320/10° subhorizontal</td>
</tr>
<tr>
<td>$\sigma_{3/2}$ 2-3 MPa 050/15° subhorizontal</td>
</tr>
</tbody>
</table>

Martin & Lanyon (2003), Bossart & Wermeille (2003) - $\sigma_{2/3}$ in plane but not well defined

| σ_1 8.6 MPa 033/0° horizontal |
| σ_2 6.7 MPa 123/70° subvertical |
| σ_3 3.9 MPa 303/20° subhorizontal |

Enachescu (2011)

| σ_1 15 MPa 320/0° subhorizontal |
| σ_2 8 MPa 070/0° subhorizontal |
| σ_3 4 MPa subvertical |

Shin (2006, 2009)
1. Introduction

2. Sampling and rock mechanical testing

3. In-situ stress testing

4. Excavation damaged zone (EDZ)

5. THM-modeling

6. Conclusions
Resin impregnation technique for EDZ characterization

Borehole length: 5.0 m, diameter: 42 mm, slightly inclined

Ventilation line
Injection line

Pressure vessel
Resin injection
Scale

N2

Data from Bure rock lab (ANDRA)

Bossart et al. (2002)
EDZ development and observations on various scales

Stress-induced breakouts

Mechanical controlled breakouts

breakouts where bedding plane is tangential to borehole circumference

bedding plane (rock anisotropy)
Temporal evolution of borehole disturbed zone

- Short-term BDZ (within hours)
 - tangential shear fractures
- Extensional fractures and secondary shear fractures
 - interconnected fracture network
- Intermediate-term BDZ (within days)
 - tangential fractures in the opposing direction
 - further bedding parallel fractures, buckling chimney

Kupferschmied et al. (2015)
EDZ - hydraulic properties and self-sealing

- Pneumatic tests / short intervals:
 - Gas permeability high close to tunnel wall
- Self-sealing tests (hydraulic):
 - Swelling closes fractures
- Self-sealing tests (mechanical):
 - Mechanical confinement through buffer
- Cyclic deformations:
 - Humidity variations change properties of EDZ

Bossart et al. (2002)
Conceptual model of EDZ for tunnel towards South (HM-coupling)

Martin & Lanyon (2002)
1. Introduction

2. Sampling and rock mechanical testing

3. In-situ stress testing

4. Excavation damaged zone (EDZ)

5. THM-modeling

6. Conclusions
Selection of numerical models applied at Mont Terri

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Year</th>
<th>Content</th>
<th>Model type</th>
<th>Constitutive Model</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>HM-A</td>
<td>2015</td>
<td>HM- modeling tunnel of rock lab (collaboration swisstopo, EPFL)</td>
<td>Hydro-Mechanical coupled</td>
<td>Bilinear strain-hardening/softening ubiquitous joints APD (Anisotropy, plasticity, damage)</td>
<td>FLAC 3D, CODE-ASTER</td>
</tr>
<tr>
<td>FE</td>
<td>2012</td>
<td>Predictive modeling of FE</td>
<td>Hydro-Mechanical coupled</td>
<td>Bilinear strain-hardening/softening ubiquitous joints</td>
<td>FLAC 3D</td>
</tr>
<tr>
<td>DR</td>
<td>2010</td>
<td>Modeling of diffusion experiment</td>
<td>Hydro-Chemical</td>
<td>Reactive transport model</td>
<td>PHREEQC</td>
</tr>
<tr>
<td>MB</td>
<td>2009</td>
<td>Excavation of MB niche</td>
<td>Hydro-Mechanical coupled</td>
<td>Bilinear strain-hardening/softening ubiquitous joints</td>
<td>FLAC 3D</td>
</tr>
<tr>
<td>EZ-A</td>
<td>2006</td>
<td>Stability of EDZ around EZ-A</td>
<td>Hydro-Mechanical coupled</td>
<td>Elastoplastic, Mohr Coulomb</td>
<td>FLAC 3D</td>
</tr>
<tr>
<td>Gallery04</td>
<td>2005</td>
<td>Deformations in EZ-B and HG-A niches</td>
<td>Hydro-Mechanical coupled</td>
<td>Elastoplastic, Mohr Coulomb</td>
<td>FLAC 3D</td>
</tr>
<tr>
<td>VE</td>
<td>2004</td>
<td>Modeling of micro tunnel</td>
<td>Hydro-Mechanical coupled</td>
<td>Elastoplastic model</td>
<td>CODE-BRIGHT</td>
</tr>
<tr>
<td>HE-D</td>
<td>2004</td>
<td>Modeling HE-D Experiment</td>
<td>THM</td>
<td>Elastoplastic model Elastoplastic model Isotropic poroelastic model</td>
<td>FLAC 3D, CODE-BRIGHT CODE-ASTER</td>
</tr>
<tr>
<td>HE</td>
<td>2002</td>
<td>Modeling of HE niche excavation</td>
<td>Hydro-Mechanical coupled</td>
<td>Elastoplastic ubiquitous joints</td>
<td>FLAC 3D</td>
</tr>
<tr>
<td>RA</td>
<td>2001</td>
<td>Modeling EDZ behavior</td>
<td>Hydro-Mechanical coupled</td>
<td>Bilinear strain-hardening/softening ubiquitous joints</td>
<td>FLAC 3D</td>
</tr>
<tr>
<td>DM</td>
<td>1999</td>
<td>Deformation mechanisms, new constitutive law</td>
<td>Hydro-Mechanical coupled</td>
<td>Bilinear strain-hardening/softening ubiquitous joints</td>
<td>FLAC 2D</td>
</tr>
<tr>
<td>ED-B</td>
<td>1999</td>
<td>Numerical modeling of the EDZ with PFC</td>
<td>Hydro-Mechanical coupled</td>
<td>Isotropic Mohr Coulomb Isotropic particle flow, incl. damage</td>
<td>FLAC 3D, PFC</td>
</tr>
<tr>
<td>ED-B</td>
<td>1998</td>
<td>Modeling EDZ Gallery 98 section</td>
<td>Hydro-Mechanical coupled</td>
<td>Elastoplastic ubiquitous joints</td>
<td>FLAC 3D</td>
</tr>
</tbody>
</table>
Coupled THM simulation of a heater experiment

- Heater experiment HE-D, THM responses
- Equilibration, 2 phases of heating, cooling
- Benchmarking with 8 modelling teams, different codes
Coupled THM simulation of a heater experiment

- Good agreement for temperature
- Higher differences for pore water pressure (not all aspects of evolution covered)
- General trend for deformation with much more variations

Decovalex, ANDRA, GRS
New constitutive law for Opalinus Clay (APD)

- Anisotropy (calibration through non-linear regression)
- Plastic formulation (Non-linear yield function with bounding surface)
- Damage formulation (Damage coupled with plastic hardening, modification to account for residual value of damage)
- Localization and regularization (Fernandez & Chambon, 2008)

→ Numerical implementation into Code_Aster

Effect of confinement on localization

Vertical displacement field

Parisio et al. (2015)
Conclusions

• Standardized protocols for sampling and conditioning of shale-rock samples are required.

• More data from the heterogeneous sandy facies have to be acquired.

• Magnitude and orientation of in-situ stress tensor depends on local geometry, depth, rock stiffness.

• The EDZ has a large impact on tunnel stability. It exhibits a high complexity in tectonized, anisotropic and heterogeneous rocks.

• Prediction of deformation in Opalinus Clay is still a challenging task due to its post-failure behavior. New tools are available now.
Selected references

