Étude théorique et expérimentale du boulonnage à ancrage réparti sous sollicitations axiales

Assemblée Générale Annuelle et Séance Technique du CFMR

Centre de Géosciences

Prix de thèse Pierre LONDE

Laura BLANCO MARTÍN

Directeur de thèse : Michel TIJANI Co-encadrement : Faouzi HADJ-HASSEN

Paris, le 5 décembre 2013

- Domaines d'utilisation : industrie minière, génie civil
- Principe : on insère une tige dans le terrain et on l'ancre de façon à ce qu'elle soit solidaire du terrain
- Rôles du boulonnage :

Avantages : installation facile, faible encombrement, prix, ...

- Utilisation extensive depuis 1960 (> 10^8 boulons/an en 2003)
- Large éventail d'applications

Source : Atlas Copco

Source : WSDOT

Source : Andra (2012)

Source : Andra (2012)

- Utilisation extensive depuis 1960 (> 10^8 boulons/an en 2003)
- Large éventail d'applications

Source : Atlas Copco

- Types de boulons :
 - ancrage ponctuel
 - friction
 - ancrage réparti

Source : WSDOT

Le boulonnage à ancrage réparti

Éléments (Windsor et Thompson, 1996) :

Soutènement de type passif : c'est le mouvement du terrain qui active le boulon

Le boulonnage et le câblage

Figure: boulons (*source : Bigby et Wittenberg*)

Figure: câbles (source : Barley et Windsor)

Conditions spécifiques à cette recherche

Source : Bawden et al.

- Barres soumises à des forces axiales de traction, statiques
- Sollicitations monotones
- La barre reste élastique

Conditions spécifiques à cette recherche

Source : Bawden et al.

- Barres soumises à des forces axiales de traction, statiques
- Sollicitations monotones
- La barre reste élastique
- Expérimentalement : rupture à l'interface tige-scellement par décohésion

Conditions spécifiques à cette recherche

Source : Bawden et al.

Objectif de la recherche

Étudier le comportement de l'interface barre-scellement

Étude théorique de l'interaction interface-matériaux environnants Étude expérimentale en laboratoire Méthode pour accéder à une loi d'interface Conclusions et perspectives

Études théoriques & expérimentales Modélisation

Plan

Introduction & état de l'art

Études théoriques & expérimentales Modélisation

Étude théorique de l'interaction interface-matériaux environnants

Réponse normale Réponse tangentielle

Étude expérimentale en laboratoire

Description de l'appareillage Résultats

Méthode pour accéder à une loi d'interface

Importance des effets radiaux Proposition d'un modèle semi-empirique

Conclusions et perspectives

L'essai d'arrachement

Étude théorique de l'interaction interface-matériaux environnants Étude expérimentale en laboratoire Méthode pour accéder à une loi d'interface Conclusions et perspectives

Études théoriques & expérimentales Modélisation

Études sur la réponse tangentielle à l'interface

 Relation cisaillement-glissement, τ_b (W), tri-linéaire (Benmokrane *et al.* 1995, Ren *et al.* 2010, ...):

Phases :

- I. réponse élastique
- II. décohésion ou endommagement de l'interface
- III. résistance résiduelle due au frottement

Étude théorique de l'interaction interface-matériaux environnants Étude expérimentale en laboratoire Méthode pour accéder à une loi d'interface Conclusions et perspectives

Études théoriques & expérimentales Modélisation

Études sur la réponse tangentielle à l'interface

 Relation cisaillement-glissement, τ_b (W), tri-linéaire (Benmokrane *et al.* 1995, Ren *et al.* 2010, ...):

Phases :

- I. réponse élastique
- II. décohésion ou endommagement de l'interface
- III. résistance résiduelle due au frottement

Étude théorique de l'interaction interface-matériaux environnants Étude expérimentale en laboratoire Méthode pour accéder à une loi d'interface Conclusions et perspectives

Études théoriques & expérimentales Modélisation

Études sur la réponse tangentielle à l'interface

- Relation cisaillement-glissement, τ_b (W), tri-linéaire (Benmokrane *et al.* 1995, Ren *et al.* 2010, ...):
- Outils pour relier F et τ_b

Étude théorique de l'interaction interface-matériaux environnants Étude expérimentale en laboratoire Méthode pour accéder à une loi d'interface Conclusions et perspectives

Études théoriques & expérimentales Modélisation

Études sur la réponse tangentielle à l'interface

- Relation cisaillement-glissement, τ_b(W), tri-linéaire (Benmokrane *et al.* 1995, Ren *et al.* 2010, ...):
- Outils pour relier F et τ_b
- Limites principales :
 - réponse normale à l'interface non explicite
 - approches limitées à des relations $\tau_b(W)$ tri-linéaires

Étude théorique de l'interaction interface-matériaux environnants Étude expérimentale en laboratoire Méthode pour accéder à une loi d'interface Conclusions et perspectives

Études théoriques & expérimentales Modélisation

Loi de comportement complète (normale + tangentielle)

Étude de Hyett et al., 1995

Introduction & état de l'art Étude théorique de l'interaction interface-matériaux environnants Étude expérimentale en laboratoire

Conclusions et perspectives

Étude expérimentale en laboratoire Méthode pour accéder à une loi d'interface

Loi de comportement complète (normale + tangentielle)

- Étude de Hyett et al., 1995
- Étude de la décohésion à l'interface câble-scellement :
 - direction tangentielle : $\tau_b = p_b \tan(\varphi)$
 - direction normale : joint hyperbolique avec dilatance

Études théoriques & expérimentales Modélisation

Loi de comportement complète (normale + tangentielle)

- Étude de Hyett et al., 1995
- Étude de la décohésion à l'interface câble-scellement :
 - direction tangentielle : $\tau_b = p_b \tan(\varphi)$
 - direction normale : joint hyperbolique avec dilatance
- Modèle analytique pour reproduire les essais d'arrachement

Études théoriques & expérimentales Modélisation

Loi de comportement complète (normale + tangentielle)

- Étude de Hyett et al., 1995
- Étude de la décohésion à l'interface câble-scellement :
 - direction tangentielle : $\tau_b = p_b \tan(\varphi)$
 - direction normale : joint hyperbolique avec dilatance
- Modèle analytique pour reproduire les essais d'arrachement
- Limites :
 - ► comportement normal inspiré des joints rocheux → représentatif de l'interface câble-scellement ?
 - validité inconnue pour les boulons

Études théoriques & expérimentales Modélisation

Modélisation numérique du boulonnage passif

► Sans discrétisation de l'interface : comportement en cisaillement du scellement → pas de glissement

Études théoriques & expérimentales Modélisation

Modélisation numérique du boulonnage passif

- Sans discrétisation de l'interface : comportement en cisaillement du scellement → pas de glissement
- Discrétisation de l'interface :

Études théoriques & expérimentales Modélisation

Modélisation numérique du boulonnage passif

- Sans discrétisation de l'interface : comportement en cisaillement du scellement → pas de glissement
- Discrétisation de l'interface :
 - comme une discontinuité (2D)

Études théoriques & expérimentales Modélisation

Modélisation numérique du boulonnage passif

- Sans discrétisation de l'interface : comportement en cisaillement du scellement → pas de glissement
- Discrétisation de l'interface :
 - comme une discontinuité (2D)
 - comme un milieu continu (2D, 3D)

Source : logiciel CESAR (École des Ponts ParisTech)

Études théoriques & expérimentales Modélisation

Modélisation numérique du boulonnage passif

- Sans discrétisation de l'interface : comportement en cisaillement du scellement → pas de glissement
- Discrétisation de l'interface :
 - comme une discontinuité (2D)
 - comme un milieu continu (2D, 3D)

Études théoriques & expérimentales Modélisation

Modélisation numérique du boulonnage passif

- Sans discrétisation de l'interface : comportement en cisaillement du scellement \rightarrow pas de glissement
- Discrétisation de l'interface :
 - comme une discontinuité (2D)
 - comme un milieu continu (2D, 3D)

Laura Blanco Martín

Le boulonnage à ancrage réparti

Réponse normale Réponse tangentielle

Plan

Introduction & état de l'art

Études théoriques & expérimentales Modélisation

Étude théorique de l'interaction interface-matériaux environnants Réponse normale Réponse tangentielle

Étude expérimentale en laboratoire Description de l'appareillage Résultats

Méthode pour accéder à une loi d'interface

Importance des effets radiaux Proposition d'un modèle semi-empiri

Conclusions et perspectives

Réponse normale Réponse tangentielle

L'interface influence les matériaux environnants

Interface

Matériaux environnants

Réponse normale Réponse tangentielle

L'interface influence les matériaux environnants

Réponse normale Réponse tangentielle

L'interface influence les matériaux environnants

Réponse normale Réponse tangentielle

L'interface influence les matériaux environnants

Réponse normale Réponse tangentielle

Lien entre u_{rr} et p_r avec Δu_{rb} et p_b : approche classique

Réponse normale Réponse tangentielle

Lien entre u_{rr} et p_r avec Δu_{rb} et p_b : approche classique

Réponse normale Réponse tangentielle

Lien entre u_{rr} et p_r avec Δu_{rb} et p_b : approche classique

Laura Blanco Martín Le boulonnage à ancrage réparti

Réponse normale Réponse tangentielle

Lien entre u_{rr} et p_r avec Δu_{rb} et p_b : approche classique

Laura Blanco Martín Le boulonnage à ancrage réparti

(

Réponse normale Réponse tangentielle

Lien entre τ_b et F : nouvel outil analytique

$$dF = 2\pi R_b \tau_b(W) dZ \setminus ext{R}$$
ésolution de :
 $F = \pi R_b^2 E_b W' / E_b R_b W'' = 2\tau_b(W)$

Réponse normale Réponse tangentielle

Lien entre τ_b et F : nouvel outil analytique

Réponse normale Réponse tangentielle

Lien entre τ_b et F : vérification de l'outil

Nouvel outil analytique : L.Blanco Martín *et al*. (2011)

Améliorations par rapport aux solutions existantes

- Outil non limité à $\tau_b(W)$ tri-linéaire
- Conditions aux limites employées (extrémité libre seule)
- Deux cas de figure : L constante, L décroissante

Limites (communes aux solutions existantes)

- Sollicitations monotones
- La barre reste en phase élastique

Réponse normale Réponse tangentielle

La longueur L influence le lien entre τ_b et F

 Application de l'outil pour prédire six cas identiques mais avec des longueurs différentes

Laura Blanco Martín

Le boulonnage à ancrage réparti

Description de l'appareillage Résultats

Plan

Introduction & état de l'art

Études théoriques & expérimentales Modélisation

Étude théorique de l'interaction interface-matériaux environnants

Réponse normale Réponse tangentielle

Étude expérimentale en laboratoire Description de l'appareillage Résultats

Méthode pour accéder à une loi d'interface Importance des effets radiaux Proposition d'un modèle semi-empirique

Conclusions et perspectives

Description de l'appareillage Résultats

Nouveau banc expérimental d'arrachement

Description de l'appareillage Résultats

Nouveau banc expérimental d'arrachement

Laura Blanco Martín

Le boulonnage à ancrage réparti

Description de l'appareillage Résultats

Nouveau banc expérimental d'arrachement

Description de l'appareillage Résultats

Nouveau banc expérimental d'arrachement

Variables mesurées :

- déplacement axial
- force axiale
- pression de confinement

Description de l'appareillage Résultats

Nouveau banc expérimental d'arrachement

Variables mesurées :

- déplacement axial
- force axiale
- pression de confinement

Souplesse pour étudier plusieurs paramètres :

- Iongueur d'ancrage, L
- pression de confinement, pr
- barre, scellement, roche
- épaisseur de l'anneau de scellement
- rugosité du trou borgne
- rupture à l'interface roche-scellement

Description de l'appareillage Résultats

Améliorations progressives

Réduction des effets de bord •

Description de l'appareillage Résultats

Améliorations progressives

- Réduction des effets de bord •
- Possibilité de faire des cycles de charge-décharge

Description de l'appareillage Résultats

Améliorations progressives

- Réduction des effets de bord •
- Possibilité de faire des cycles de charge-décharge
- Câbles : conception d'outils pour éviter le dévissage

Description de l'appareillage Résultats

Améliorations progressives

- Réduction des effets de bord •
- Possibilité de faire des cycles de charge-décharge
- Câbles : conception d'outils pour éviter le dévissage

Étalonnage du banc pour corriger l'effet de l'ancrage supérieur

ParisTech

Description de l'appareillage Résultats

Matériaux employés

Boulons

- Barres HA25 (Andra)
- Fibres de verre (Andra)
- Tiges lisses

 Flexible (Osborn Strata Products, Ltd.)

Description de l'appareillage Résultats

Matériaux employés

Boulons

- Barres HA25 (Andra)
- Fibres de verre (Andra)
- Tiges lisses

Câbles

 Flexible (Osborn Strata Products, Ltd.)

Scellement

- Résine
- Coulis de ciment, $w : c = \{0.35, 0.4\}$

Roche

Grès des Vosges

Description de l'appareillage Résultats

Paramètres étudiés

- Longueur d'ancrage, $L \in [90, 150] \ \mathrm{mm}$
- ▶ Pression de confinement, $p_r \in [0, 15]$ MPa
- Type et profil de la barre
- Conditions aux limites :
 - pression de confinement constante
 - rigidité radiale externe constante

Description de l'appareillage Résultats

Résultats (I) : L n'a pas d'effet direct sur τ_b

Description de l'appareillage Résultats

Résultats (II) : F augmente avec p_r . Fracturation radiale

Laura Blanco Martín Le boulonnage à ancrage réparti

Description de l'appareillage Résultats

Paris**Tech**

Résultats (III) : le profil de la barre se retrouve dans F

L=90 mm, p_r=5 MPa, résine, p_r constante

Description de l'appareillage Résultats

Résultats (III) : le profil de la barre se retrouve dans F

Comparaison boulon—câble. Scellement à la résine, \mathbf{p}_{r} constante

Description de l'appareillage Résultats

Résultats (IV) : influence des conditions aux limites

L'effet de p_r sur τ_b est maintenu lorsque p_r varie au cours de l'essai. Importance des effets radiaux.

Boulons HA25, résine

Description de l'appareillage Résultats

Résultats (IV) : influence des conditions aux limites

L'effet de p_r sur τ_b est maintenu lorsque p_r varie au cours de l'essai. Importance des effets radiaux.

Boulons HA25, résine

Importance des effets radiaux Proposition d'un modèle semi-empirique

Plan

Introduction & état de l'art

Études théoriques & expérimentales Modélisation

Étude théorique de l'interaction interface-matériaux environnants

Réponse normale Réponse tangentielle

Étude expérimentale en laboratoire Description de l'appareillage

Méthode pour accéder à une loi d'interface

Importance des effets radiaux Proposition d'un modèle semi-empirique

Conclusions et perspectives

Importance des effets radiaux Proposition d'un modèle semi-empirique

Importance des effets radiaux Proposition d'un modèle semi-empirique

But des essais d'arrachement

Détermination de Δp_b et comparaison avec τ_b

Remarques :

▶ Ressemblance entre $\tau_b(W)$ et $\Delta p_b(W) \rightarrow$ proportionnalité?

Détermination de τ_b : réponse tangentielle

Détermination de Δp_b : réponse normale
Détermination de Δp_b et comparaison avec τ_b

Remarques :

- ► Ressemblance entre $\tau_b(W)$ et $\Delta p_b(W) \rightarrow$ proportionnalité?
- Δp_b commence à augmenter pour $W \simeq 0$
- Premier pic de $\tau_b(W)$ et $\Delta p_b(W)$ décalés

développement du joint ?

Détermination de Δp_b et comparaison avec τ_b

Remarques :

- ▶ Ressemblance entre $\tau_b(W)$ et $\Delta p_b(W) \rightarrow$ proportionnalité?
- Δp_b commence à augmenter pour $W \simeq 0$
- Premier pic de $\tau_b(W)$ et $\Delta p_b(W)$ décalés
- Les pics suivants sont en phase
- Profil du boulon reflété dans les oscillations

développement du joint ?

joint découplé?

Importance des effets radiaux Proposition d'un modèle semi-empirique

Décomposition semi-empirique de τ_b en deux parties

$\tau_{b}\left(W,\Delta p_{b}\right)=\tau_{v}\left(\Delta p_{b}\right)+\tau_{c}\left(W\right)$

- au_{v} : partie proportionnelle à $\Delta p_{b} \rightarrow$ frottement
- au_c : partie à pression constante ightarrow adhésion, liaison mécanique

Importance des effets radiaux Proposition d'un modèle semi-empirique

Décomposition semi-empirique de τ_b en deux parties

$$\tau_{b}\left(W,\Delta p_{b}\right) = \tau_{v}\left(\Delta p_{b}\right) + \tau_{c}\left(W\right)$$

- au_{v} : partie proportionnelle à $\Delta p_{b} \rightarrow$ frottement
- au_{c} : partie à pression constante ightarrow adhésion, liaison mécanique

Laura Blanco Martín

Le boulonnage à ancrage réparti

Importance des effets radiaux Proposition d'un modèle semi-empirique

Obtention empirique de l'ouverture Δu_{rb}

Remarques :

• L'ouverture Δu_{rb} est dominée par le profil $\rightarrow \Delta u_{rb}(W)$

Importance des effets radiaux Proposition d'un modèle semi-empirique

Obtention empirique de l'ouverture Δu_{rb}

Remarques :

- L'ouverture Δu_{rb} est dominée par le profil $\rightarrow \Delta u_{rb}(W)$
- ► Manque provisoire de données → on suppose pour l'instant indépendance en p_b

Importance des effets radiaux Proposition d'un modèle semi-empirique

Obtention empirique de l'ouverture Δu_{rb}

Remarques :

- L'ouverture Δu_{rb} est dominée par le profil $\rightarrow \Delta u_{rb}(W)$
- Manque provisoire de données → on suppose pour l'instant indépendance en p_b Le modèle s'ajuste assez bien aux résultats en laboratoire

Nombre de paramètres : 4

Importance des effets radiaux Proposition d'un modèle semi-empirique

Plan

Introduction & état de l'art

Études théoriques & expérimentales Modélisation

Étude théorique de l'interaction interface-matériaux environnants

Réponse normale Réponse tangentiel

Étude expérimentale en laboratoire

Description de l'appareillage Résultats

Méthode pour accéder à une loi d'interface

Importance des effets radiaux Proposition d'un modèle semi-empirique

Conclusions et perspectives

Conclusions

- ► Méthode analytique pour relier variables observables et pertinentes → comportement tangentiel et radial de l'interface
- Étude expérimentale \rightarrow essais d'arrachement :
 - emploi et amélioration d'un nouveau banc d'essais
 - observation de l'effet de L, pr, type et profil de la barre, conditions aux limites
 - mise au point d'un dispositif pour tester les câbles sans dévissage
- Méthode d'obtention de la loi d'interface :
 - prise en compte des effets radiaux : comparaison de τ_b et p_b
 - formulation semi-empirique pour un modèle de τ_b et Δu_{rb}

Perspectives

 La méthode pour l'obtention de la loi intrinsèque τ_b (W, p_b) et Δu_{rb} (W, p_b) est applicable à d'autres boulons et câbles à ancrage réparti

Détermination de la loi de comportement pour chaque combinaison barre-scellement

Perspectives

 La méthode pour l'obtention de la loi intrinsèque τ_b (W, p_b) et Δu_{rb} (W, p_b) est applicable à d'autres boulons et câbles à ancrage réparti

Détermination de la loi de comportement pour chaque combinaison barre-scellement

Implémentation de la loi d'interface dans un code de calcul

Prédiction de la réponse du soutènement passif dans des ouvrages réels

Merci de votre attention

Bibliographie

- Blanco Martín L., Tijani M., Hadj-Hassen F. A new analytical solution to the mechanical behaviour of fully grouted rockbolts subjected to pull-out tests. *Construction and Building Materials*, 2011, 25, 749 - 755.
- Blanco Martín L., Hadj-Hassen F., Tijani M. A new experimental and analytical study of fully grouted rockbolts. Proceedings of the 45th US Rock Mechanics/Geomechanics Symposium, San Francisco, CA, 26-29 June 2011.
- Blanco Martín L., Tijani M., Hadj-Hassen F., Noiret A. Assessment of the bolt-grout interface behaviour of fully grouted rockbolts from laboratory experiments under axial loads. *International Journal of Rock Mechanics & Mining Sciences*, 2013, 63, 50-61.
- Blanco Martín L. Theoretical and experimental study of fully grouted rockbolts and cablebolts under axial loads. PhD thesis MINES-ParisTech, 2012.