

LACQ - ROUSSE CO₂ storage demonstration pilot

Axel-Pierre Bois – November, 25 2014

- Rousse pilot
- Cement-sheath chemical integrity
- Cement-sheath mechanical integrity

Selection among gas fields produced by TOTAL

4

Reservoir comparison for site selection

	Max flow	Cumul flow GSm ³	Pressure - MPa		Installations	Droduction
	MSm³/j		Initial	Final	IIIStdildtiolis	Production
Lacq	30	250	62	2	Oui	Oui
Meillon Saint Faust	10	58	48	10	Oui	Oui
Ucha-Lacommande	0.3	1.9	47	7	Non	Non
Rousse-Mano	0.3	0.9	48	3	Oui	Non
Rousse-Meillon	1.2	3.7	49	15	Oui	Oui

Pilot 0.06 0.06 10)
--------------------	---

- Rousse-Mano is an isolated low-pressure reservoir that is no longer produced and that is still completed
- It has been produced with on well : RSE-1

- Under-pressurized reservoir
- Capillary entry pressure
 - Difficult to evaluate due to heterogeneity
- Geomechanics
 - No plasticity during production
 - Fault stability uncertainty at pressure larger than the initial pressure

- Geochemistry
 - Limited impact of CO₂ on the carbonated reservoir
 - Minor variations of mineralogy and porosity
 - Diffusion of CO₂ through the overburden slowed by geochemistry
- Deshydration in near wellbore area due to gas expansion

- CO₂ migrates downwards in the reservoir
 - No accumulation of CO_2 below the overburden
- Wellbore integrity
 - Cement sheath initially good
 - No risk due to mechanical damage
 - No risk due to chemical degradation

CO2 injection - monitoring system

- Injection monitoring
 - Flow, composition
- Surface seismicity monitoring
- Downhole reservoir monitoring
 - P, T @4335 m
 - Seismicity
- Environnemental monitoring

- Regional seismicity related to Pyrenees and Lacq reservoir depletion Close to the site
 - Only 3 events detected by the surface network near Rousse with magnitude between -1 and -0.3
 - From March 2011, more than 2000 micro seisms detected by downhole sensors with magnitude between -2.4 and -0.8

Cement / CO₂ : Uncoupled tests

X-Ray tomography: cement densification (carbonation) over time

CURIS'

Cement/CO₂: Uncoupled tests

12

90°C – Neat class G Reacted thickness (mm) Neat Class G @ 90°C & 8 MPa **Kinetics of the reaction:** Linear with respect to square root of time 9.6 mm/ \sqrt{yr} 8 6 10 0 4 Porosity decreases from 30 to 22% Time of experiment (v day) 25 140°C – Class G + Silica Reacted thickness (mm) Class G + Silica @ 140°C & 8 MPa Kinetics of the reaction: Linear with respect to time 73 mm/yr Porosity is less affected (25-28%) 20 40 60 80 n 100 Time of experiment (day)

Cement is in contact with CO₂ under stress

Cement-sheath mechanical integrity

Heating Increase in mud pressure Soft formation

Cement-sheath mechanical integrity

Cement-sheath mechanical integrity

Loadings

- Cement hydration
- Mud pressure
- Temperature
- Pore-pressure
- Compaction
- Dynamic

Mechanisms

- Elasticity
- Shear failure
- Tensile failure
- Pore collapse
- Creep
- Fatigue
- Degradation

Thank you

CurisTec

Parc d'Affaires de Crécy 3 rue Claude Chappe 69370 Saint-Didier-Au-Mont-d'Or (Lyon) France +33 4 74 26 93 55

www.curistec.com