Risques de géomécaniques dans le contexte des stockages de CO2 en aquifères profonds

SSEE 2014

J. Rohmer <u>j.rohmer@brgm.fr</u>

>Contexte

>Vision d'ensemble des risques géomécaniques en phase d'injection

>La question du long terme

CONTEXTE

Capture – Transport – Stockage de CO2

- Une des solutions identifiées pour réduire les émissions de CO₂ (« Climate Change 2014: Mitigation of climate change », GIEC);
- Devrait participer à leur réduction à hauteur de un cinquième d'ici 2050 (IEA, 2009);

Démontrer la sécurité

Projets « grande échelle »

Sleipner, deep saline aquifer, Norway, 1 Mt CO₂/y since 1996

Weyburn-Midale, oil reservoir, Canada, 1.8 Mt CO_2/y since 2000

Courtesy CO2REMOVE, Statoil, PTRC

In-Salah, gas reservoir, Algeria 1 Mt CO₂/y since 2004

Snohvit, deep saline aquifer, Norway, 0.7 Mt CO₂/y since

Le CO2 en profondeur: état surpercritique

T=100°C, P=280bar (2800m)	density (kg/m3)	viscosity (mPa⋅s)
supercritical CO ₂	615	0.05
water	804	0.16
methane	150	0.02

VISION D'ENSEMBLE

Multiples risques géomécaniques

Rutqvist, 2012

Multiples risques géomécaniques

Unwanted mechanical changes

Rutqvist, 2012

Multiples risques géomécaniques Unwanted mechanical changes

Risque lié à la perte d'intégrité de la couverture (fracturation / réactivation de failles mineures / fractures)

Multiples risques géomécaniques Unwanted mechanical changes

Risque lié perte d'intégrité du puits

Rutqvist, 2012

Multiples risques géomécaniques Unwanted mechanical changes Localized deformation? CO₂ buoyancy migration? Fracturing? Seismic? Well damage? CO, Fault reactivation? Reservoir pressure: ΔP Cooling: $-\Delta'$ Risque lié à la réactivation de failles majeures et possible sismicité induite Géosciences pour une Terre durable

Cas concret: site de stockage de CO2 à In-Salah (Algérie)

Suivi de la vitesse de déformation lors de l'injection de CO2 à In-Salah pendant la période 2004-2009 (processing par BRGM des images Envisat, Raucoules et al., 2014)

> 20

Comportement « anormal » - KB-502 Uplift /lobes Linear seismic 5 km feature KB-5 KB-502 -5 km Données InSAR MDA &

Pinnacle tech. (Wright 2011)

Géosciences pour une Terre durable prqm

gm

Cas concret: site de stockage de CO2 à In-Salah (Algérie)

Possible explication: zone fracturée

LA QUESTION DU LONG TERME

Solution > Solution

- At least 1000 years containment
- Mean leakage rate < 0.1 % / year

Risque sur le long terme? 80 -after 30y of injection 75 ---1 month (post-injection) 70 -1 year (post-injection) Decrease ---5 years (post-injection) 65 of 97% in 50y 10 years (post-injection) 60 ---50 years (post-injection) 55 Overpressure (bars) 50 45 40 35 30 25 20 15 10 5 0 10^{-1} 10⁰ 10^{2} 10^{3} 10^{4} 10^{1} 10⁵ Lateral distance from the CO₂ injector (m)

1D multiphase flow model of 1 Mt/y CO2 injection in the Dogger (Paris basin)

Rohmer et al., 2010

Dissolution of CO2 over time

Chemical-mechanical processes

A large variety...

- Dissolution processes
- Chemo-mechanical processes: Stress-enhanced dissolution (Pressure solution PS) and Sub-critical fracturing and stress corrosion (SC)
- Complex interactions with clay minerals
- Change of rock / fracture strength

Chemical-mechanical processes

A large variety...

Dissolution processes

- Chemo-mechanical processes: Stress-enhanced dissolution (Pressure solution PS) and Sub-critical fracturing and stress corrosion (SC)
- Complex interactions with clay minerals
- Change of rock / fracture strength

Crack propagation in reservoir rocks in the context of CO₂ storage

Thèse de Gisèle Suhett Helmer

Directeur : M. Jean Sulem (Navier) M. Siavash Ghabezloo (Navier) M. Jérémy Rohmer (BRGM)

Cooperation with

LMT – M. François Hild

EIFER – M. Alain Dimier

Soutenance le 11/12/2014!

Estimate of fracture toughness via confrontation of several experimental tests, numerical modelling & digital image correlation technique

Estimate of fracture toughness via confrontation of several experimental tests, numerical modelling & digital image correlation technique

Autoclave

Duration : 1 month P=150 bars, T=60 °C

Thèse de Gisèle Suhett Helmer 2014

Quelques résultats « positifs » / risque

After 4 weeks of exposure: $14.5\% \rightarrow 14.9\%$ Mean pore radius $1.6\mu m \rightarrow 1 \mu m$

Intact		Exposed to CO2(aqueous) during 4 weeks (autoclave, 150 bars, 60 °C)		
SCB	CCBD	SCB	CCBD	
14	11	14	4	
0.65	0.61	0.58	0.58	
0.51-0.77	0.55-0.68	0.46-0.69	0.54-0.66	
-	SCB 14 0.65 0.51-0.77	SCBCCBD14110.650.610.51-0.770.55-0.68	SCB CCBD SCB 14 11 14 0.65 0.61 0.58 0.51-0.77 0.55-0.68 0.46-0.69	(autoclave, 150 bars, 60 °C) SCB CCBD SCB CCBD 14 11 14 4 0.65 0.61 0.58 0.58 0.51-0.77 0.55-0.68 0.46-0.69 0.54-0.66

RÉSUMÉ ET DISCUSSION

Risques géomécaniques dans le contexte des stockages de CO2

> Multiples:

- Réactivation de faille
- Perte d'intégrité de la couverture
- Perte d'intégrité des puits
- Mouvements du sol induits

> En phase opérationnelle (injection)

- Leur évaluation peut se baser sur les procédures / outils de l'ingénierie pétrolière;
- Confrontation simulations versus observations en particulier à In-Salah, Weyburn

Risques géomécaniques dans le contexte des stockages de CO2

Etendue spatiale des perturbations mécaniques peut aller beaucoup plus loin que celle de la bulle

Intégrer dans l'analyse des failles « aveugles »

> Dimension temporelle via les processus chimie-mécaniques

- Multiples processus
- Besoin de recherche pour en comrpendre les mécanismes

Merci de votre attention !

Remerciements:

