Large Scale thermohaline salt cavern- & Small Scale urban home-energy geostorages - a geomechanical view

Frank Wuttke & Henok Hailemariam

Kiel University

2) Thermohaline Energy Geo-Storage (Large Scale Geo-Storage)

3) Urban Energy Geo-Storage (Small Scale Geo-Storage)

<<u><53 1958</u>

Storage type	Classes	Volumetric Energy density	Storage size	
	Aquifer Storage	30-40 KWh/m ³	>100.000 m³	
	Thermohaline Storage	60-80 kWh/m ³	500.00010.000.000 m ³	Large
	Rock cavern-water storage	60-80 kWh/m ³	10.000100.000m ³	Storage
Thermal storage (Sensible energy storage)	Bore hole heat exchanger	15-30 kWh/m³	10.00020.000m ³ expandable	Urban
	Gravel-water thermal storage	30-50 kWh/m³	<10.000 m³	I Storage System
	Soil-water thermal storage	30-60 kWh/m ³	<10.000 m³	1
Phase change Material Energy Storage	Snow-Ice cryogenic storage		<100.000 m³	~
Mechanical storage	Compressed air storage, adiabatic	2 kWh/m²	300.000 m³	
	Pumped hydroelectric storage	1 kWh/m³	12.000.000 m ³	Larg Stor
Chemical energy storage	Hydrogen storage	410 kWh/m ³	70.000500.000 m ³	
	Fuel storage / Diesel	9700 kWh/m ³		

Mangold (2007), SWT Stuttgart

Power – Heat – Power & Power – Heat Technology (Sensible Heat Technology)

Proposed Energy Geostorage - Novelty

- Arbitrary size of existing Salt Caverns (>105...108m³)
- Concentrated brine an approximate 50% higher energy storage
- No need of overburden pressure
- Seasonal Storage in existing Salt Formation distributed in Europe / Worldwide
- Power-Heat-Power & Power-HeatTechnology already existing & strong Reserach
- Natural Heat Buffer
- Natural and cheap storage media (Brine)

A A STOP

Fluid Parameters

NaCl-H2O / MgCl2-H2O - Fluid mixtures: 10 / 15 / 20 / 25 and 30 [wt.%] Rock salt blocks (NaCl): density 2.1-2.4 g/cm³, cs= 850 J/kgK, k=0.6 W/mK

Fluid Parameters

Typical temperature of heat output (large scale test)

Fluid Parameters

Convection / Fluid-Fluid-Interface Stability

Heat transfer

Image sources: Schweinsberg / IVG Caverns (2013) Workshop -GeoEngineering Energy Geo-storage

Thermal diffusion time given by the diffusion equation: amount of time needed to decrase the temperature τ inside the cavern and brine in quadratically inreasing with the storage diameter r

 $\tau = r^2/\kappa$

 $\kappa = \lambda / (\rho c_p)$, λ – thermal conductivity, ρ – density and c_p spezific heat capacity.

Underground thermal energy storage (UTES) – Project IGLU Energy

UTES for single dwellings

Requirements for a Thermal Energy Storage material

- High specific heat capacity, c.
- Optimum thermal conductivity, λ (higher than 0.3 W/m·K).
- Reasonable initial strength and setting time but ultimate material strength should be moderate to enable future maintenance and/or removal.
- Good workability and self compacting property to enable filling places.
- Operational up to temperature range of 90°C as it is a 'water-based storage'.

Two sets of materials have been developed and studied in detail

Thermal buffer material named "Thermo-Verfüll-Baustoff (TVB)"
Several combinations of Sand, Bentonite, Chalk and other binders to achieve a sound energy storage material

Tested Commercial Materials: Dyckerhoff Dämmer® - cement based material

Dyckerhoff DÄMMER Bindemittel zum Verfüllen, Abdichten und Verfestigen

Thermal conductivity – 1,3 W/mK Hydraulic conductivity – 2x10-9 m/s

Tested Commercial Materials: Dyckerhoff Dämmer® - cement based material

Chemical composition of TVB by X-ray fluorescence (XRF)

Oxide	% by weight	
SiO ₂	10.36	
	2.86 1 4	
CaO	52.13	
MgO KaO	1.11 3.77	
Na ₂ O	0.43	
TiO ₂	0.21	
Others	0.272	

Quicklime (CaO)

Melting at 1200 °C to homogenize the material mix

The high heat storage capacity is attributed to the high content of *CaO*, specific heat capacity of up to 800 J/kg⁰K (2.7 MJ/m³K) @ 293 ⁰K.

Thermal fill and backfill by ,liquide soils' (Advantages: sustainability, costs, workability, repair,...)

Experimental results

Optimization and development with several mix proportion of *Sand, Bentonite* and other binders

****** Bentonite content of 10 to 20 % of total mass is best mix according to Flow powder test (IAB Weimar)

Grain-size distribution

Thermal properties measured with a Decagon KD2 Pro Transient line source

Specific heat capacity

Thermal behavior of developed UTES materials

Outcome

Thermohaline energy geo-storage systems as an easy alternative for existing large scale energy geo-storage systems

➢Brine as storage material has excellent conditions (cheap, stable fluid interfaces, less chemobiologic active)

> By using ordinary geo-materials: sand (c=1.3 MJ/m³K) and bentonite (c=1.1 MJ/m³K), geomaterials with specific heat capacity of up to 2.7 MJ/m³K and optimum thermal conductivity, 0.5 W/mk, can be achieved \rightarrow further optimization possible (chalk, fly ash, CaO-materials)

> The analyzed sand-bentonite mixtures have a higher dry densities (Fuller grain size distribution) and water storage system \rightarrow improvements in specific heat capacity and reasonable thermal conductivity

Photo: Frank Paul