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Crack initiation and propagation in rocks
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Principal methods for cracking modeling

Nucleation and propagation of cracks: key mechanism of failure and instability of geomaterials
and related structures

cracks seen as localization bands (weak discontinuity): bifurcation theory, high order gradient
models, non-local damage models;

discrete methods: DEM, Peridynamics theory, RBS (rigid block spring) method, etc.

Boundary element method;

Finite element methods: XFEM, EFEM, Phase-field

The interface elastic stiffness’ are calibrated from experimental val-
ues of macroscopic elastic parameters obtained from triaxial tests
with different loading directions. The obtained parameters are
listed in Table 5.With these parameters, the calculated elastic mod-
ulus is 4 GPa for the perpendicular direction and 8.5 GPa for the
parallel direction to bedding planes. The modulus ratio between
the two principal directions is of the same order of magnitude as
that obtained in experimental data for the Cox argillites [2,3].

6.1. Results for GED (case 4)

In Figs. 21 and 22, we show the fracture zone, the distribution of
microcracks and the evolutions of displacement induced by exca-
vation. The first tensile cracks are obtained at k ¼ 0:686 (16th
day) and the first shear cracks at k ¼ 0:815 (17th day). Comparing
with the reference case for an isotropic material (case 1), it can be
clearly found that the extent of fracture zone significantly

Table 5
Parameters used for calculations of case 4 (anisotropy in both strength and elasticity).

E/GPa v g Bh/MPa�1 Bv/MPa�1 Ch/MPa Cv/MPa T/MPa

3.02 0.3 6.73 0.38 0.19 2.2 22 1
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Fig. 20. Displacement evolutions of selected points for GCS in case 3.

Fig. 19. Fracture zones and distribution of cracks for GCS in Case 3: in (a) displacement magnified by 5; in (b) blue color for tensile cracks and pink for shear cracks. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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of different porous concretes was investigated by 2D numerical simu
lations in the framework of finite element method. The distributions of 
aggregates and macro-voids in the samples were based on real 3D 
tomographic images. A good qualitative agreement was obtained be
tween the numerical and experimental results. Furthermore, in the 
previous study (Ren et al., 2015), 2D meso-scale finite element models 
have been developed based on 3D high-resolution X-ray tomographic 
images to simulate crack propagation processes in concrete composites 
under uniaxial tension loading. They have investigated the effects of 
mesh type, loading path and fracture parameters on both the global 
stress-strain curves and cracking patterns. The numerical results agreed 
qualitatively and quantitatively well with the experimental data. 
Therefore, the usefulness of simplified 2D numerical simulations has 
been demonstrated. 

Inspired by those previous studies, simplified 2D simulations are also 
performed in this study. The cross section located in the middle of 
sample is selected as the representative micro-structure of concrete 
composite. The geometry of the selected section and the distribution of 
inclusions are shown in Fig. 8. For PD modelling, the cross section is 
discredited into material particles based on a uniform grid with a 

spacing of Δx = 0.04 mm. Further, three basic parameters of the cement 
paste have been identified by using experimental data reported in (Li, 
2016): the volume density is 1530 kg/m3 and the Young modulus is Ec =

15 GPa. For the value of critical fracture energy G0 of the cement paste, 
different values can be found in literature (Carpinteri and Ingraffea, 
2012), ranging in 3.5–20.4 J/m2. In this study, the value of 15 J/m2 is 
used. The main properties of inclusions are given in Table 4. And the 
linear thermal expansion coefficient of the cement paste used in this 
study is 10 × 10− 6/K (Li et al., 2018). 

4.3. Simulation results of step 1 

As shown in Fig. 7, the whole drying process is composed of two 
steps. In the first step, temperature is held constant while it is increased 
and decreased during the second step. In order to separate thermal 
cracking from shrinkage induced one, numerical simulations are also 
performed by two steps. The emphasis of the first step is put on the 
drying shrinkage cracking. Further, the concrete composite 3 with glass 
balls (case 3: Ei = 68 GPa) is used as a reference material. Similarly to 
previous studies (Fu et al., 1994; Grassl et al., 2010), the drying 
shrinkage deformation is here represented by a prescribed compressive 
bond stretch. More precisely, in previous experimental works, the 
macroscopic shrinkage deformation of cement-based materials has been 
measured for different types of cement-based materials. For instance, in 
(Almudaiheem, 1991), the shrinkage induced strain for neat cement 
pastes with W/C ratio of 0.4–0.6 and dried at a relative humidity of 11% 
for 6–240 days was about 0.46–0.55%. In (Fu et al., 1994), the shrinkage 
strain values of 0.2–1.3% were obtained for neat cement paste with W/C 
ratio of 0.25–0.70 during a drying period of 6 months. Therefore, as for 
the previous studies (Fu et al., 1994; Grassl et al., 2010), the value of 
shrinkage strain of cement composites studied here during the first 
drying step is estimated as 0.5%. On the other hand, this macroscopic 
shrinkage strain should be converted to the local compressive bond 
stretch. According to the relationship between a given macroscopic 
strain tensor E(x) and the equivalent PD deformation state Y given in 
(Silling and Lehoucq, 2010): Y = E(x)ξ + O(|ξ|2), the local bond stretch 
is approximatively equal to the macroscopic linear strain. As a conse
quence, the prescribed value of compressive bond stretch during the first 
drying step is taken as s = 0.5%. Further, in order to represent the 
progressive propagation of drying process from the external surface to 
the centre of sample, the cross section is divided into 21 layers. And the 
compressive bond stretch is prescribed layer by layer. In each layer, the 

Fig. 6. Cracking patterns in eight selected random micro-structures.  

Fig. 7. Evolution of relative humidity and temperature over time.  

Y. Jin et al.                                                                                                                                                                                                                                       

(Jin et al. 2021)

the ratios of tensile cracks play a dominant role in both weak layers and rock matrix, either for low

or high confining stress. For rock matrix, the ratios of tensile cracks (blue ones) in all cases of seven325

weak layer orientations increase first and then tend to gentle values with confining stress. While for

weak layers, the change of crack ratios is relatively complex that is dominated by tensile cracks (red

ones) under low confining stress, and by the combined tensile and shear cracks (red and yellow ones)

for high confining stress.
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Figure 13: Fracture propagation patterns of rock samples with different weak layers for two confining stresses: (a)

1MPa; (b) 20MPa

In addition, the fracturing process is also related to fluid pressure diffusion. Two representative330

examples of fluid pressure evolution along hydraulic fracture are presented in Fig. 14(b) for the ori-

entation of 45◦. It is interesting to find that fluid pressure appears a beaded distribution under low

confining stress, and a smooth diffusion for high one. This change is mainly due to fluid flow dif-

ference. When confining stress is low, the overall permeability of rocks is relatively large, especially

in weak layers. It is easily to cause the accumulation of fluid pressure at weak layers during local335

cracking breakthrough rock matrix. Whereas when confining stress becomes large, due to the perme-

ability smallness in both weak layers and rock matrix, fluid pressure mainly evolutes along hydraulic

fracture and finally forms a smooth pressure grade zone.

20

(Zhang, Shao et al. 2022)
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Cracking modeling with finite element framework -1

Extended finite element method (XFEM):

Global enrichment of displacement discontinuity (Moes et al. 1999):

uh(x) =
∑
I∈N

NI(x)uI+
∑
I∈Ncr

NI(x)(H(φ(x))− H(φ(xI)))aI

+
∑

I∈Ntip

NI(x)
4∑

k=1

(Fk(x)− Fk(xI))bk
I

Enriched tip element function (Belytschko and Black, 1999):

{F} =
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Cracking modeling with finite element framework -2
EFEM - Enriched finite element method (Oliver 1996; Sun et al. 2021a, 2021b): Elementary enrichment of
displacement discontinuity

Simulation of cracking - the discontinuity
E-FEM : Enriched Finite Element Method
Discontinuity : jump in the displacement field (cracking)

Mode-I cracking (opening) and mode-II cracking (sliding)

u = û︸︷︷︸
regular part

+(HSu −φe)[|u|]︸ ︷︷ ︸
enhanced part

ε = ∇s(û)︸ ︷︷ ︸
regular part

+ Gs[|u|]︸ ︷︷ ︸
enhanced part

3 / 12

No transition from diffuse damage to localized cracking; difficult combination of tensile and shear cracks
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Variational non-local damage approach - Phase-field models
Variational approach of fracture mechanics (Francfort and Marigo 1998; Bourdin et al. 2000) Approximation of sharp

crack surface area by smeared crack field d(x) ∈ [0, 1]:

AΓ =

∫

Γk
dA =⇒ AΓl(d) =

∫

Ω
γ(d,∇d)dΩ

Total energy functional:
E(ε(u), εp,Vp, d) =

∫

Ω
ψ(ε, εp,Vp, d)dV +Dc +

∫

Ω
β(d)

∫ t

0
φ(ε̇p, V̇p)dτdV

Dissipated energy during crack growth Dc:

Dc =

∫

Ω
gcγ(d,∇d)dV

Minimization of the total energy functional and crack evolution law:
∂

∂d
ψ(ε, εp,Vp, d) + β′(d)Dp +

gc

ld
d − gclddiv(∇d) = 0

Difficult evaluation of displacement discontinuity
8 / 30



Objective: Micro-mechanics based damage-friction model

Localization

Transition from mircrocracking

to localized cracking

Transition from diffuse damage to localized cracking in saturated porous media by considering
coupling between microcrack growth and frictional sliding.

Establishing the poroelastic relations of cracked media

Thermodynamics framework for microcrack propagation and frictional sliding, with the fluid
pressure effect

Modeling of localized cracks at elementary level with homogenization procedure
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RVE of porous materials with diffuse micro-cracks

Porous elastic matrix

microcrack

microcracksPorous elastic matrix

E = Em + Ec

Homogenized poroelastic law:

(Σ + BPw) = Chom : E = Cm : (E − Ec) , B = δ − Chom : Ss : δ

Macroscopic elastic stiffness tensor:

Chom = Cm + φc (Cc − Cm) : Ac = 3khomJ+ 2µhomK ; Shom =
(
Chom

)−1
= Sm + Sf

with the MT scheme for isotropic matrix with open microcracks:

Chom =
1

1 + η1d
3kmJ+

1
1 + η2d

2µmK , η1 =
16
9

1 − (νm)2

1 − 2νm
, η2 =

32
45

(1 − νm)(5 − νm)

2 − νm
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Damage-friction coupling in closed microcracks
Free energy function (continuity between open and closed microcrack):

Ψu =
1
2
(E − Ec) : Cu : (E − Ec) +

1
2

Ec : Cf : Ec − M

(
m
ρ0

f

− ϕp

)
B : (E − Ec) +

M
2

(
m
ρ0

f

− ϕp

)2

Equivalently:
Ψ =

1
2
(E − Ec) : Cm : (E − Ec) +

1
2

Ec : Cf : Ec −
1
2

NPw
2 − Pw (E − Ec) : B − PwEc : δ

Cu = Cm + M(B ⊗ B),
1
N

= (B − ϕI) : Sm : I,
1
M

=
1
N

+
ϕ

kf
, Cf =

1
η1d

3kmJ+
1
η2d

2µmK

State equations
Σ = Cm : (E − Ec)− BPw

(ϕ− ϕ0 − ϕp) =
∂ (Ψ−Ψc)

∂Pw
= NPw + (E − Ec) : B

(Pw − Pw,0) = −
∂Ψu

∂ϕp
= M

[(
mf

ρ0
f

− ϕp

)
− (E − Ec) : B

]
Conjugate forces related to damage and friction

Yd = −
∂Ψ

∂d
= −

1
2

Ec :
∂Cf

∂d
: Ec , Σc = −

∂Ψ

∂Ec
= (Σ + Pwδ)− Cf : Ec
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Evolution of pore fluid pressure:
An effective form of pore-plasticity:

ϕp = βtr(Ec) = βEc : δ

The coefficient β generally determined from experimental data.

Incremental of interstitial fluid pressure (zero at drained tests)

dPw = M [− (dE − dEc) : B − βdEc : δ]

Evolution of porosity
(ϕ− ϕ0) = NPw + (E − Ec) : B + βEc : δ

Frictional sliding and damage growth:

Friction criterion with local stress tensor

F (Σc) = ∥Sc∥+ ηf Σ
c
m ≤ 0 with Σc = (Σ + Pwδ)− Cf : Ec

Damage criterion based on the concept of energy release rate

G
(
Yd, d

)
= Yd −R (d) ≤ 0 with R (d) =

2ξ
1 + ξ2

R (dc) , ξ =
d
dc

R (dc) equivalent critical toughness for onset of localized crack!
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RVE of porous quasi-brittle materials selected after localization onset

u (x) = u− (x) +HS [û (x) + w]

ϵ (x) = ∇symu (x) = ∇symu− (x) +∇symû (x) +
(
w⊗n

)
δS (x)

Volume averaging over the strongly discontinuous element embedded in the RVE

E = 1
V

∫
V ϵ (x)dΩ = ∇sym

[
u− (x) +

Ω+

Ω
u (x)

]
︸ ︷︷ ︸ +

S
Ω

w⊗n︸ ︷︷ ︸
Em + Ec Ẽc
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Free energy with localized crack

Ψ̃ =
1
2

(
E − Ec,l − Ẽc

)
: Cm :

(
E − Ec,l − Ẽc

)
+

1
2

Ec,l : Cf ,l : Ec,l +
1
2

Ẽc : Cn : Ẽc

−
1
2

NPw
2 − Pw

(
E − Ec,l − Ẽc

)
: B − Pwδ :

(
Ec,l + Ẽc

)
State equations with localized crack:

Σ =
∂Ψ̃

∂E
= Cm :

(
E − Ec,l − Ẽc

)
− PwB

(ϕ− ϕ0) = NPw +
(

E − Ec,l − Ẽc
)
: B + ϕ0

(
Ec,l + Ẽc

)
: δ

(Pw − Pw,0) = M

[(
mf

ρ0
f

− ϕ0

(
Ec,l + Ẽc

)
: δ

)
−
(

E − Ec,l − Ẽc
)
: B

]
Thermodynamic forces for localized crack:

Σ̃c =
∂Ψ̃

∂Ẽc
= (Σ + Pwδ)− Cn : Ẽc

Ỹd = −
∂Ψ̃

∂d
= −

1
2

Ẽc :
∂Cn

∂d
: Ẽc
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Frictional sliding and growth of localized crack

Friction criterion of localized crack
F̃
(
Σ̃c
)
= ∥τ̃ c∥+ η̃f Σ̃

c
n ≤ 0

where
τ̃ c = Σ̃c · n · T = τ − n · T · Cn : Ẽc ; Σ̃c

n = n · Σ̃c · n = Σn − N : Cn : Ẽc + Pw

If no rotation of principal axes in conventional triaxial compression, flow direction simplified as

t =
τ

∥τ∥
= sign (Σ1 −Σ3)

e1 − (e1 · n) n√
1 − e1 · n

so that ∥τ̃ c∥ = τ̃ c · t

Non-associated frictional flow - friction-induced dilatancy:

F̃p

(
Σ̃c
)
= ∥τ̃ c∥+ βd η̃f Σ̃

c
n ≤ 0 with V =

∂F̃p

∂Σ̃c
= t⊗n + βd η̃f N

Evolution of localized crack

G̃
(
Ỹd, d

)
= Ỹd − R̃ (d) = 0 with R̃ (d) =

2ξ
1 + ξ2

R̃ (dc) , ξ =
d
dc

≥ 1
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Onset of localized crack and orientation

Localization onset

Based on the critical damage, the corresponding
microcrack-induced plastic strain at cracking localization:

Ec,l =

∫ dc

0
λcD = Λc,lD = dc

√
2R (dc)

χ
D

Localized crack

Critical plane:
Σ = Σ1e1 ⊗ e1 +Σ2e2 ⊗ e2 +Σ3e3 ⊗ e3

n (θ, ϑ) = [cos θ , sin θ sinϑ , sin θ cosϑ]

The localized crack orientation verifies:

F̃ (θ, ϑ) = ∥τ∥+ η̃f Σn + η̃f Pw −

√
2R̃ (dc)κ2

κp
= 0

with κ = ct
2 + η̃f η̃pcn and κp = ct

2 + η̃2
pcn
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Mohr’s maximization postulate
The orientation of localized crack:

(θc, ϑc) = argmax F̃ (θ, ϑ)

The maximum condition:

∂F̃ (θ, ϑ)

∂ (θ, ϑ)

∣∣∣∣∣
(θc,ϑc)

= 0 ; (θ, ϑ) ·
∂2F̃ (θ, ϑ)

∂ (θ, ϑ)2

∣∣∣∣∣
(θc,ϑc)

· (θ, ϑ) ≤ 0 , ∀ (θ, ϑ) ∈
[

0,
π

2

]
Particular case of conventional triaxial conditions:

n (θ) = [cos θ , 0 , sin θ]

Macroscopic stresses

Σn = n ·Σ · n = Σ1 cos
2 θ +Σ3 sin

2 θ

∥τ∥ = ∥Σ · n · T∥ = (Σ1 −Σ3) cos θ sin θ

Mohr’s maximization postulate

∂F̃ (θ)

∂θ

∣∣∣∣∣
θc

= 0 ;
∂2F̃ (θ)

∂θ2

∣∣∣∣∣
θc

≤ 0

with solution:
θc = arc tan

(
η̃f +

√
1 + η̃2

f

)

Localized crack

0 0.5 1 1.5 2
40

50

60

70

80

90
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Analytical and semi-analytical solutions
At the initiation of localized crack:  F (Σ,Pw, dc) = F̃ (Σ,Pw, d)

∣∣∣
d+c

Σ|dc
= Σ|d+c

The analytical solution for drained tests while a semi-analytical solution for undrained conditions.

Drained conditions:

1⃝ Give a damage variable d at the beginning, compute the plastic multiplier Λc and the damage resistance R (d) (or Λ̃c and R̃ (d),
depending on d > dc);

2⃝ Calculate the macroscopic axial stress Σ1 by the confining stress Σ3 and interstitial pressure Pw;

3⃝ Finally, obtain the macroscopic strain:

E = Sm : Σ + ΛcD or E = Sm : Σ + ΛclD + Λ̃cV

Undrained conditions:

1⃝ Calculate the macroscopic stress-strain values by an trial value (at first Ptr
w = Pw,0);

2⃝ Then, substitute the plastic strain to obtain the current interstitial pressure Pnew
w = Pw,0 + dPw;

3⃝ Introducing a relative error:
ϖw =

∣∣∣∣Ptr
w − Pnew

w

Ptr
w

∣∣∣∣
4⃝ If ϖw ≤ Πw, accept results; otherwise, let Ptr

w = Pnew
w and return 1⃝ to recalculate.
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Drained triaxial tests for Sichuan sandstone
Table: Model parameters of Sichuan sandstone

Em νm dc cf R (dc) c̃f R̃ (dc) θc

20000MPa 0.2 1.8 1.01 0.069 0.59 0.086 60.42◦

-2 -1 0 1 2

50
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250

(a) Pore preesure Pw=0MPa
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(b) Pore preesure Pw=10MPa

Figure: Experimental data and numerical results for triaxial drained compression tests on Sichuan stone
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Application to Lac du Bonnet granite
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Figure: Analytical stress-strain curves of triaxial compression test on Lac du Bonnet granite with and
without considering localized crack R (d) = Rc

b(d/dc)
b−1+(d/dc)b , b > 1
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Undrained triaxial tests for Vosges sandstone
Table: Model parameters of Vosges sandstone

Em νm dc cf R (dc) c̃f R̃ (dc) θc b ϕ

20000MPa 0.2 1.5 0.73 0.13 0.42 0.14 56.40◦ 0.5 0.2
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Figure: Experimental data and model numerical results for triaxial drained compression tests on Vosges stone 25 / 30



Traxial tests for Hubei sandstone
Table: Model parameters of Hubei sandstone

Parameter Em νm dc cf R (dc) c̃f R̃ (dc) θc b ϕ

Drained 18000MPa 0.23 1 1.001 0.046 0.59 0.057 60.30◦ \ \
Undrained 21000MPa 0.23 1.3 0.61 0.16 0.35 0.18 54.70◦ 0.55 0.2
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Figure: Experimental data and model numerical results for triaxial compression tests on Hubei stone 26 / 30



Local extended semi-implicit return mapping (LESRM) algorithm
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Figure: Numerical algorithm results
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Figure: Flowchart of LESRM algorithm
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Conclusions and perspectives

Conclusions:

Transition from diffuse micro-cracks to localized cracks.

Pore pressure effect - effective stress concept.

Coupling of friction-induced dilation - fluid pressure evolution.

Verification for both drained and undrained tests.

A novel algorithm for further numerical implementation.

Perspectives:

Effective implementation for boundary values problems.

Permeability change - cracking process.

Extension to partially saturated media and THM problems.
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Thanks for your attention
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