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Crack initiation and propagation in rocks
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Cracking pattern of COx claystone in triaxial compression tests (Zhang et al. 2023)
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Principal methods for cracking modeling

Nucleation and propagation of cracks: key mechanism of failure and instability of geomaterials
and related structures

@ cracks seen as localization bands (weak discontinuity): bifurcation theory, high order gradient
models, non-local damage models;

o discrete methods: DEM, Peridynamics theory, RBS (rigid block spring) method, etc.
@ Boundary element method;
o Finite element methods: XFEM, EFEM, Phase-field

(Yao, Shao et al. 2017) (Jin et al. 2021) (Zhang, Shao et al. 2022)
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Cracking modeling with finite element framework -1

Extended finite element method (XFEM):

Unit: MPa
@ Global enrichment of displacement discontinuity (Moes ctar. 1999): e
180
160
") =D Ni(urt Y Ni(x) (H(p(x) = H(o (o))
IeEN IEN¢®T 120 .
£ 100
+ Z Nl Z bI 80 ‘ o
IENtP k=1 60 -1
40 s
@ Enriched tip element function (setytschko and Black, 1999): 2
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Nucleation of new cracks; crack growth extent, orientation for 3D multiple cracks; change of DOF
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Cracking modeling with finite element framework -2

EFEM - Enriched finite element method (oiver 1996; sun etat. 20212, 20210): Elementary enrichment of
displacement discontinuity

Discontinuity : jump in the displacement field (cracking)

Mode-I cracking (opening) and mode-II cracking (sliding)

u= &  +(H, —0)[ul]
regular part enhanced part

e= V(@) + Giful
—— ——

regular part  enhanced part

S, L

No transition from diffuse damage to localized cracking; difficult combination of tensile and shear cracks
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Variational non-local damage approach - Phase-field models
Variational approach of fracture mechanics (Francfort and Marigo 1998; Bourdin etal. 2000) Approximation of sharp

crack surface area by smeared crack field d(x) € [0, 1]:

Ar= [ dA — Ap(d) = / +(d, Vd)dQ
T Q

Total energy functional: .
Blew). e V7,d) = [ vie.e” Vv D+ [ 5d) [ oter,Vryaray
Q Q 0

Dissipated energy during crack growth D,:
D, = / gcy(d, Vd)dv
Q
Minimization of the total energy functional and crack evolution law:
0
50V d)+ B (d)D, + %d — gelydiv(Vd) = 0
d

Difficult evaluation of displacement discontinuity
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Objective: Micro-mechanics based damage-friction model

Localization

T

Transition from mircrocracking
to localized cracking

Transition from diffuse damage to localized cracking in saturated porous media by considering
coupling between microcrack growth and frictional sliding.

o Establishing the poroelastic relations of cracked media

@ Thermodynamics framework for microcrack propagation and frictional sliding, with the fluid
pressure effect

@ Modeling of localized cracks at elementary level with homogenization procedure
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RVE of porous materials with diffuse micro-cracks

Porous elastic matrix .
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Damage-friction coupling in closed microcracks
Free energy function (continuity between open and closed microcrack):

2
\Iﬂ';(E—EC):C”:(E—E“H;E”:Cf:E“—M<"é—¢I’>B:(E—EC)+A24 <"Z)— )

Pr Py
i : 1 . 1 1
Equivalently: g, _ 5 (E—E):C":(E—E) 4 JE:C B — NP> — Py (E—E):B—PE: 5
C"=C"+M(B®B) i=(37¢1)-s'"-1 1_1.9 @f=i3k'"ﬂ+izwu<
"N M N K md md

12/30



Damage-friction coupling in closed microcracks

Free energy function (continuity between open and closed microcrack):
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@ State equations
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@ Conjugate forces related to damage and friction
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Evolution of pore fluid pressure:
@ An effective form of pore-plasticity: & = Bir(ES) = BE° : &
The coefficient 3 generally determined from experimental data.

@ Incremental of interstitial fluid pressure (zero at drained tests)

dP, = M [— (dE — dE°) : B — BdE° : 6]

@ Evolution of porosity
(¢ ¢0) NPy, + (E - EC) B+ BEC )
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Evolution of pore fluid pressure:
@ An effective form of pore-plasticity: & = Bir(ES) = BE° : &
The coefficient 3 generally determined from experimental data.

@ Incremental of interstitial fluid pressure (zero at drained tests)

dP, = M [— (dE — dE°) : B — BdE° : 6]

@ Evolution of porosity
(¢ — o) = NPy + (E —E) : B+ BE: §

Frictional sliding and damage growth:

@ Friction criterion with local stress tensor
F(Z) = IS + =, <0 with 3¢ = (X +P,6) —C : E°

@ Damage criterion based on the concept of energy release rate

2€ B i
1+§2R(£l{) ’ Ei de

g(yd,d) =Y R <0  with R(d) =

R (d.) equivalent critical toughness for onset of localized crack!
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RVE of porous quasi-brittle materials selected after localization onset

—\xN"T

Q  Porous elastic matrix

u(x) =u" (x) +Hs [t (x) +w]
€(x) = V¥u (x) = VY"u™ (x) + V¥ (x) + (w®n) ds (x)

Volume averaging over the strongly discontinuous element embedded in the RVE
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Free energy with localized crack
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@ State equations with localized crack: _
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@ Thermodynamic forces for localized crack:
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Frictional sliding and growth of localized crack

@ Friction criterion of localized crack . .
F(Z) =10+ <o

where

F=35nT=1—nT-C":E ;5=n-3n=5,-N:C":E°+P,

If no rotation of principal axes in conventional triaxial compression, flow direction simplified as

1= ”:;” = sign (X — X3) % sothat ||T€|| =7t
@ Non-associated frictional flow - friction-induced dilatancy:
Fo (5) =170+ Baip S5 <0 with V= ggi = @n+ BaiyN
@ Evolution of localized crack
(j(ji‘ﬂd):j)dffz(d):o with ﬁ(d):lfffzfz(dc) ,gzdi'izl
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Onset of localized crack and orientation

Based on the critical damage, the corresponding
microcrack-induced plastic strain at cracking localization:

d 2R (d,
E”:/)xpzwmzm j%ﬁp
0

Critical plane:
Y=Y Qe + 22, Re, + 23e3Qe5

n(0,9) = [cosf ,sinfsin¥ ,sin b cos VY]

The localized crack orientation verifies:

- ~ N 2R (d.) K2
FO.0) = ol + 75+ P — [T
P

with & = & + fipfipca and kp = & + 72ca
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Mohr’s maximization postulate

The orientation of localized crack:

(6c,9.) = arg max F (0, 9)

The maximum condition:

e R
( ’ ) (9(‘ 7/l9f‘)

Particular case of conventional triaxial conditions:
n () = [cosf ,0 ,sin6]
@ Macroscopic stresses
Yy=n-X-n= X cos’ 0+ Xssin® 0
Izl =& n- T = (£ — Z5) cos Osin 0
@ Mohr’s maximization postulate

dF (0) - PF(0)
o |, T 902

with solution:
6 = arctan (7 + /1477 )
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Analytical and semi-analytical solutions

At the initiation of localized crack: -
F(X,Py,d;) = F (X, Py,d) i+

c
X, =%
|d(. ‘dj
The analytical solution for drained tests while a semi-analytical solution for undrained conditions.

Drained conditions:

(@ Give a damage variable d at the beginning, compute the plastic multiplier A¢ and the damage resistance R (d) (or A¢and R (d),
depending on d > d);

@ Calculate the macroscopic axial stress 3| by the confining stress X3 and interstitial pressure P,,;

(® Finally, obtain the macroscopic strain:

E=S":X+AD or E=S":X+AD+ AV

Undrained conditions:
(@ Calculate the macroscopic stress-strain values by an trial value (at first P& = Py, o);
(@ Then, substitute the plastic strain to obtain the current interstitial pressure Pj% = Py +dPy;
P — phew

tr
P

® Introducing a relative error: o =

@ If w” < IIY, accept results; otherwise, let P, = PV and return (D) to recalculate.
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Drained triaxial tests for Sichuan sandstone

Table: Model parameters of Sichuan sandstone

E" Voode o R & R(d) 0.
20000MPa 0.2 1.8 1.01 0069 059 0086 60.42°

2507 X) — Y5(MPa) 2501 5,  5,(MPa)
1723 a

S4=50MPa o
T;—40MPa Ty=60MPa
Sy=30MPa Ty=50MPa
$y=20MPa $3=40MPa

3=30MPa

P,=10MPa
2 2 1 0 1 2
By(%) Ei(%)
(a) Pore preesure P,,=0MPa (b) Pore preesure P,,=10MPa

Figure: Experimental data and numerical results for triaxial drained compression tests on Sichuan stone
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Application to Lac du Bonnet granite

Deviatoric stress (MPa)

Figure: Analytical stress-strain curves of triaxial compression test on Lac du Bonnet granite with and

without considering localized crack R (d) = R b>1
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Undrained triaxial tests for Vosges sandstone

Table: Model parameters of Vosges sandstone

E" v'oode o RW) & RWd) 6 b ¢
20000MPa 02 15 073 013 042 014  5640° 05 02
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(a) Confining stress 3X3=30MPa (b) Confining stress X3=50MPa

Figure: Experimental data and model numerical results for triaxial drained compression tests on Vosges stone 25730



Traxial tests for Hubei sandstone

Table: Model parameters of Hubei sandstone

Parameter E™ voode o R(de) ¢ R(de) 0. b ¢

Drained 18000MPa 0.23 1 1.001 0.046 0.59 0.057 60.30° \ \
Undrained 21000MPa 0.23 1.3 0.61 0.16 035 0.18 54.70° 0.55 0.2

P,(MPa) P,(MPa)

i = s(MPa) 0 5 10 15 5\ — 55(MPa) 0 5 0 15 20
2007 %, - Ty(MPa) 150 200
Q Q
Ty=40MPa @150 - 150 5
0 0 . |
Sy30MPa 00 PSS 00 o 6°
y=20MPa “GDO3 BT Al
5o . 180
T=10MPa  T7O% P ~ /
\ < 56 1
B 5!
Z3=30MPa 24=50MPa
-1 05 0 05 1 15 05 0 05 1 15 05 0 05 1 15
Ey(%) Ey(%) Ey(%) Ey(%) Ey(%) Ey(%)
(a) Dry materials (b) Undrained tests at X3=30MPa (¢) Undrained tests at X3=50MPa

Figure: Experimental data and model numerical results for triaxial compression tests on Hubei stone 26/30



Local extended semi-implicit return mapping (LESRM) algorithm

250 [ %y — 53(MPa)

—Analytical solution 5!
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(b) Undrained tests of Vosges sandstone

Figure: Numerical algorithm results
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or localization-based model

!

™
Elastic prediction and plastic-damage = m”(:“ 0. ‘)

correction by semi-implicit return mapping AT, = max(¢dT,, - ,dT....)

(SRM) algorithm (correction of interstitial
pressure additionally under undrained)
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Figure: Flowchart of LESRM algorithm
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Conclusions and perspectives

Conclusions:
@ Transition from diffuse micro-cracks to localized cracks.
@ Pore pressure effect - effective stress concept.
@ Coupling of friction-induced dilation - fluid pressure evolution.
@ Verification for both drained and undrained tests.

@ A novel algorithm for further numerical implementation.

Perspectives:
o Effective implementation for boundary values problems.
@ Permeability change - cracking process.

o Extension to partially saturated media and THM problems.
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