Enseignements tirés d'essais de chauffage in-situ dans des argilites

Benoit Garitte

Swiss concept for the HLW¹ repository

 Monitored Geological Repository

- HLW/SF repository
- ❷ LL-ILW repository
- Pilot repository
- Test area (rock laboratory)
- Access tunnel

Gab

• Ventilation and construction shafts

High-level radioactive waste, spent fuel and longlived intermediate level radioactive waste

Full-Scale Emplacement (FE) Experiment

Radioactive waste heat release

Gab 2014_11_25_heating_tests_garitte

Index

- Note beforehand: many of the results presented herein come from my "previous" life. The measurements are mainly due to ANDRA and the TIMODAZ and PEBS projects.
 - Introduction
 - Small scale experiments (HE-D, TER, TED and ATLAS)
 - Measurements
 - Modelling of the temperature field
 - Modelling of the pore water pressure field
 - Larger and real scale experiments
 - HE-E
 - FE

URLs in Europe

Argillaceous rocks

	Indurat	Indurated clays		
	Callovo-Oxfordian mudstone	Opalinus clay	Boom clay	
Dry density (g/cm ³)	2.21 – 2.33	2.22 - 2.33	1.61 – 1.78	
Calcite content (%)	23 - 42	6 - 22	0 - 3	
Porosity (%)	< 13	13.5 - 17.9	> 30	
Water content (%)	< 5.5	4.2 - 8.0	> 9.5	
Young's modulus (MPa)	4000 - 5600	4000 - 10000	200 - 400	
UCS (MPa)	20 - 30	4 - 22	2	
Permeability (m/s)	1 – 5x10 ⁻¹³	1 – 5x10 ⁻¹³	2 – 4.5x10 ⁻¹²	
Thermal cond. (W/mK)	1.6 – 2.8	1.2 – 1.7	1.3 – 1.7	
Geological age (million years)	Callovo-Oxfordian (Mid.–Up. Jurassic) 155.7 – 163.7	Aalenian (Middle Jurassic) 171.6 – 175.6	Rupelian (Oligocene) 28.4 – 33.9	

Most relevant properties (thermal conductivity, permeability, Gens et al. (2007) stiffness, strength) are anisotropic

Gab

THM processes

Determination of the thermal conductivity

- Under the following assumptions:
 - Saturated medium
 - Negligible porosity changes
 - Negligible convection
 - = Thermal conduction problem

Table 2 Number of temperature sensors in the rock mass in the different in situ experiments

ATLAS	TER	TED	HE-D
24	20	108	26

 Table 8
 Proposed reference thermal conductivity values for the three rocks

	$\lambda_{\rm par} \ (W/m/K)$	$\lambda_{per} \ (W/m/K)$	λ_0 (W/m/K)	$\lambda_{\rm par}/\lambda_{\rm per}$
Boom Clay	1.55	1.06	1.35	1.46
Callovo-Oxfordian Clay	1.88	1.26	1.64	1.5
Opalinus Clay	2.15	1.2	1.8	1.8

TED: temperature evolution, middle plane

TED: temperature profiles. Middle plane

nagra

Gab

TED: temperature profiles, one borehole

15

16

nagra.

17

18

nagra.

19

20

21

HE-D: pore water pressure response

23

24

ATLAS: pore water pressure

2014_11_25_heating_tests_garitte

25

HE-D: deformation measurements

ATLAS: direct pore water pressure response

HE-D: deformation

TED: pore water pressure and permeability

Evolution of pore water pressure during 4 years

29 Gab

Index

- Note beforehand: many of the results presented herein come from my "previous" life. The measurements are mainly due to ANDRA and the TIMODAZ and PEBS projects.
- Introduction
- Small scale experiments (HE-D, TER, TED and ATLAS)
 - Measurements
 - Modelling of the temperature field
 - Modelling of the pore water pressure field

2014_11_25_heating_tests_garitte

- Larger and real scale experiments
 - HE-E
 - FE

THM processes in the buffer

31

HE-E experiment: relative humidity

HE-E experiment: pore water pressure

38

Gab

nagra

FE experiment (photos by Comet)

39

Commentaires finaux

- Au cours des 10 dernières années, de nombreux essais de chauffage ont eu lieu, permettant de:
 - Observer la réponse thermo-hydro-mécanique de la roche et de la caractériser
 - Mettre en avant le caractère anisotrope de la roche
- En général, les modèles arrivent à reproduire l'ensemble des données collectées (T, H & M, mais aussi toutes les données T), en conséquence:
 - Des modèles
 - De la précision de la mise en place de l'instrumentation

40

thank you for your attention

nagra