

Prix Pierre Londe 2014



Analyse expérimentale et modélisation micromécanique de la déformation et de l'endommagement des argilites sous chargements hydrique et mécanique combinés

Linlin WANG

Directeur : Bernard HALPHEN Co-directeurs : Michel BORNERT, Ahmad POUYA



École des Ponts ParisTech



## Contexte

Argilites : Roche-hôte potentielle pour le stockage souterrain des déchets radioactifs



### Fiabilité du stockage à long terme

Mastering radioactive waste

## Argilites: un matériau extrêmement compliqué

## Déformation

- Inapproprié du poroélasticité conventionnel
  - Coefficient de Biot: 0,5 1 (Bemer, 2004, Homand, 2004, Cariou, 2012)
- Gonflement non linéaire (Pham, 2006; Valès, 2008)
- □ Le linéarité initial du contrainte-déformation présentant la déformation irréversible (Abou-Chakra Guéry, 2008)
- Endommagement et rupture
  - Peu de observation (location, nucleation, propagation)
  - □ Rupture fragile ou ductile dépendant du teneur en eau (Yang, 2012)
- Fluage
  - La connaissance des mécanismes est absent
  - □ Fluage sous faible contrainte (Zhang, 2012)

# **Comportement hydromécanique**



Hétérogénéité multi-échelle



## **Objectif**:

Identifier les mécanismes associés à l'échelle de la microstructure composite



## Plan

- Méthodologie expérimentale
- Comportement sous chargement hydrique
- Modélisation de la contrainte interne sous chargement hydrique
- Comportement sous chargement mécanique
- Conclusions



## Plan

## Méthodologie expérimentale

- Comportement sous chargement hydrique
- Modélisation de la contrainte interne sous chargement hydrique
- Comportement sous chargement mécanique
- Conclusions

## **Matériels**



#### Chargement hydrique et mécanique combinés

Observation à micro-échelle

# Corrélation des images numériques (CIN)

Mesure des champs de déformation : CMV (LMS + Navier)



# MEME + CIN sur les argilites : un travail extrêmement délicat

□ Faible déformation à mesurer (10<sup>-3</sup> pour 10%HR)

Condition défavorable pour l'imagerie du MEME (vapeur)

Une étude systématique sur les erreurs de mesure de déformation

- Bruit des images
- Erreur géométrique
- Erreur systématique

Précision de mesure appropriée :

- Déformation globale : 3 × 10<sup>-4</sup>
- Deformation locale : 1 × 10<sup>-3</sup>

**Wang, L.L.,** Bornert, M., Héripré, E., Chanchole, S., Tanguy, A. 2014. Full-field measurements on low-strained geomaterials using environmental scanning electron microscopy and digital image correlation: improved imaging conditions. *Strain*, DOI: 10.1111/str.12076.



## Plan

## Méthodologie expérimentale

## Comportement sous chargement hydrique

- Mécanismes de déformation
- Phénomènes irréversibles
- Anisotropie de déformation
- Déformation non linéaire

Modélisation de la contrainte interne sous chargement hydrique

Comportement sous chargement mécanique

## Conclusions



# Champ de la déformation hétérogène



## Interaction entre la matrix argileuse gonflante et les inclusions non-gonflants

**Wang, L.L.** et al. Microscale experimental investigation of deformation of argillaceous rocks under hydric loads. *Applied Clay Science* (soumis).

## Endommagements

Microfissuration due à l'humidification



Microfissuration due au séchage



microfissuration à l'interface Pourquoi la inclusionmatrice apparaît-elle en cas d'humidification, mais pas en cas de séchage ?





ouverture <1µm

Aux interfaces inclusion-matrice Dans la matrice argileuse

#### Dans la matrice argileuse

Wang, L.L., Bornert, M., Héripré, E., Yang, D.S., Chanchole, S. Irreversible deformation and damage in argillaceous rocks induced by wetting/drying. Journal of Applied Geophysics DOI:j.jappgeo.2014.05.015. q

# Comportement macro avec les phénomènes irréversibles

Chargement hydrique cyclique



Déformation globale quasi-réversible malgré des phénomènes irréversibles



## Plan

Méthodologie expérimentale

Comportement sous chargement hydrique

## **Modélisation de la contrainte interne sous chargement hydrique**

Comportement sous chargement mécanique

Conclusions



# Interaction inclusion-matrice

#### Observations

1) Micro-fissuration au interface inclusion-matrix en cas d'humidification, mais pas en cas de séchage.

2) Micro-fissuration fortement contrôlée par le vitesse de chargement hydrique



**Wang, L.L.**, Pouya, A., Halphen, B., Bornert, M. 2014. Modeling the internal stress filed in argillaceous rocks under humidification/desiccation. *International Journal for Numerical and Analytical Methods in Geomechanics* DOI:10.1002/nag.2267.

11



## **Auto-contrainte**



Auto-contrainte Interaction inclusion-matrix

| Humidification | compression | traction    |
|----------------|-------------|-------------|
| Séchage        | traction    | compression |

### Combinaison des deux effets inverses

Wang, L.L., 2013. Modelling the stress induced by self-restraint during wetting/drying process. AUGC 2013.

## Simulation du test de humidification



**Wang, L.L.**, Pouya, A., Halphen, B., Bornert, M. 2014. Modeling the internal stress filed in argillaceous rocks under humidification/desiccation. *International Journal for Numerical and Analytical Methods in Geomechanics* DOI:10.1002/nag.2267.

## Effet de la surface libre





Evolution de la contrainte normale (gauche) et du cisaillement (droite) à l'interface.

#### Pourquoi la microfissuration à l'interface inclusion-matrice se trouvent au cas d'humidification, pas au cas de séchage?

□ Résistance à la traction de la matrice < Résistance au cisaillement de l'interface



## Plan

Méthodologie

- Comportement sous chargement hydrique
- Modélisation de la contrainte interne sous chargement hydrique

## Comportement sous chargement mécanique

- Mécanismes de déformation et d'endommagement
- Influence de l'humidité sur le comportement mécanique
- Conclusions

## Essais

| Essai      | Conditions H et M            | Etat hydrique             |
|------------|------------------------------|---------------------------|
| Essai n°1  |                              | W= 2.2%                   |
| Essai n°2  |                              | W= 3.1%<br>HR=44%         |
| Essai n° 3 | Etat hydrique constant ,     | W= 3.8%<br>HR=44%         |
| Essai n°4  | chargement mecanique         | W= 5.4%<br>HR=91%         |
| Essai n°5  |                              | W=7.4%<br>HR=98%          |
| Essai n° 6 |                              | W=10.1%<br>HR=98%         |
|            |                              |                           |
| Essai n°7  | hydrique et mécanique couplé | 21%RH,<br>80%RH,<br>99%RH |











(0 - 17, 8 MPa)

#### **Bande horizontale**

#### **Bande inclinée**

**Compaction des macropores** et des fissures pré-existants

#### **Cisaillement**





#### **Bande horizontale**

#### **Bande inclinée**

Compaction des macropores et des fissures pré-existants

#### Cisaillement



#### **Bande horizontale**

**Bande inclinée** 

**Bande verticale** 

Compaction des macropores et des fissures pré-existants

Cisaillement

Microfissures sub-parallèles à la charge



#### **Bande horizontale**

**Bande inclinée** 

**Bande verticale** 

Compaction des macropores et des fissures pré-existants

Cisaillement

Microfissures sub-parallèles à la charge



## **Comportement mécanique**



# Chargement hydrique et mécanique combinés (essai #7)



# Influence de l'humidité sur le comportement mécanique



# Une humidité relative élevée est favorable à l'apparition de bandes de cisaillement





99%HR

## Humidité relative

Le module de cisaillement diminue

Le contrainte effective diminue (pression capillaire)



## Plan

Méthodologie

- Comportement sous chargement hydrique
- Modélisation de la contrainte interne sous chargement hydrique
- Comportement sous chargement mécanique

## **Conclusions**



# Conclusions

## Originalité de la méthode expérimentale

### MEBE + CIN

- □ Chargements hydrique et mécanique combinés dans MEBE
- Optimisation de la mesure de déformation
- □ Etude à micro-échelle de la microstructure composite



# Conclusions

### **Comportement hydrique**

- Mécanisme de déformation : Gonflement libre, contrainte interne (hétérogénéité et auto-contrainte)
- Anisotropie de déformation : Anisotropie du gonflement + orientation préférentielle des particules
- Déformation non linéaire : Microfissuration + gonflement non linéaire des argiles

Phénomènes irréversibles :

Endommagement (humidification et séchage), déformation irréversible

## Modélisation

□ Interaction inclusion-matrice (effets des inclusions voisines et de la surface libre)

□ Auto-contrainte (vitesse de chargement, taille d'échantillon)

□ Explication des résultats expérimentaux

# Conclusions

### Comportement hydromécanique

□ Mécanismes de déformation sous chargement mécaninque :

Bandes de compaction et de cisaillement, microfissuration

□ Influence de l'humidité :

Gonflement, diminution des modules d'élasticité, microfissuration hydrique

Couplage hydromécanique

Champs de déformation : rôle de la microstructure

# Merci pour votre attention

#### **ESEM+DIC – Essais de fissuration**

Echantillons ~ 5,5x5,5x11 mm, Trou foré de diam. 1mm Compression in situ sous HR contrôlée 1 éch. 30,4% (5°C, 2 Torr) et 2 éch. 98,5% (12°C, 10,4 Torr)



Images  $\Box$  (x500 - x600 - x800 - x1200 - x1600 - x6000) à divers niveaux de charge/décharge (juillet 2013)

#### **ESEM+DIC – Essai de fissuration**



HR 98,5%

0 N 150 N 350 N décharge 350 N recharge 410 N 410 N décharge

#### **ESEM+DIC – Essai de fissuration – HR 98%**



HR 98,5% 325N



(fissure supérieure)

#### (fissure inférieure)

#### ESEM+DIC – Essai de fissuration – HR 30%



0 N 20 N 30 N 45 N 60 N 100 N 260 N 700 N HR 30,4%





900 N