Localisation des déformations : cas d'une roche multiphasées (argilite) à différentes saturations imposées

F. Valès, M. Bornert, H. Gharbi, J.-C. Eytard, D. Nguyen Minh Laboratoire de Mécanique des Solides UMR7649 Ecole Polytechnique - Palaiseau - France

Étude supportée par ATIP "Micromécanique des Matériaux Géologiques sous sollicitation THM" et

ANDRA

POLYTECHNIOUE

- Type de roche et contexte général de l'étude
- **Techniques : principe, montages et limitations :**
 - **Extensométrie optique (Digital Image Correlation)**
 - Émission acoustique
- **Exemples : suivi des déformations et endommagement**
 - succion pure
 - compression uniaxiale à différents degrés de saturation
- **Conclusions et perspectives** >

Type de roche et contexte général de l'étude > Techniques : principe, montages et limitations : Digital Image Correlation Émission acoustique > Exemples : suivi des déformations et endommagement succion pure compression uniaxiale à différents degrés de saturation Conclusions et perspectives

1 – Roche type : argilite de Meuse/Haute-Marne

• sondage : EST 205 2 cellules T1 contiguës [5659 - 5655] profondeur: 481m données physiques : taux d'argile : 45%, minéraux autres : CaCO₃: 26,8%, SiO₂: 25% teneur en eau : 6,7%porosité Hg : 15,8% (séchage étuve) vitesse V_P: 2800m/s stratification sub-horizontale

Matériau multi-échelles et multi-hiérarchisé

qq Å au µm

Microscope Électronique à Transmission ...

échelle nano : feuillets et amas de feuillets Echelles investigues (microfissures ...) **Microscope** Optique Microscope Électronique à Balayage (conventionnel et environnemental) Accélérateur (ESRF, SOLEIL ...) réseau de fissure Jub orizontales en front de taille. d'origine hydrique du cm au massif lm 15mm échelle macro : composite + hétérogénéités locales (fissures, failles ...)

Organisation microstructurale du cm au micron (surface polie à sec)

Microscope optique

Secondary Electrons (SE)

Back Scattered Electrons (BSE) Microscope Electronique à Balayage (MEB)

Argilite = microstructure composite de grains de minéraux dans une matrice argileuse

(taille typique des grains : 10-50µm)

> Type de roche (argilite) et contexte général de l'étude > Techniques : principe, montages et limitations : Digital Image Correlation Émission acoustique > Exemples : suivi des déformations et endommagement succion pure > compression uniaxiale à différents degrés de saturation Conclusions et perspectives

i. Extensométrie optique : champ de déformation à partir Digital Image Correlation

1- Acquisition d'images digitales au cours de la sollicitation

(~limage/s)

temps t₀: image référence temps t: image déformée

2 -Digital Image Correlation

→ champ des déplacements

(contraste naturel ou marquage)

 $\mathcal{E}_{11}, \mathcal{E}_{22}, \mathcal{E}_{12}, \mathcal{E}_{is}, \mathcal{E}_{qq} \dots$ à différentes échelles :

- global
- zone sélectionnée-

3 – Calcul des déformations

- local

Montages préliminaires (2000) : de<u>ux échelles d'investigation - compression uniaxiale</u>

échelle de l'éprouvette

échelle de la microstructure

aux deux échelles, fortes hétérogénéités des déformations (surtout en fin d'essai) localisées dans phase argileuse <u>mais</u> relaxation importante pour la prise d'images ; en local, faible résolution (1pixel~5µm) ; contraste naturel et éclairage insuffisants pour les optiques utilisées.

Macroscale: à l'échelle de l'éprouvette objectif standard et éclairage annulaire 1300×1030 pixels, 8 bits digital camera 1 pixel = $50 \mu m$ taille du domaine de calcul des déf. 2mm

contraste naturel (microstructure polie à sec) suffisant

Microscale : à l'échelle des grains

montages spécifiques :

- 2048x2048pixels, 12bits digital camera
- Objectif microscope spécifique
 - (grossissement x10, 1pixel = $0,7\mu m$)
- Méplat (polissage à sec, très petite profondeur de champ)
- Éclairages spécifiques (LE normal : microstru latéral : contrast fo - platine 3D pour positionne

1,5 mm

Sample

 $-1pixel = 0,74\mu m$ - taille du domaine de calcul des déf. 40µm

• localisation de la source EA par algorithme de reconstruction des chemins (élimination des sources externes éprouvette : plateaux, machine, ...) (0,0)A

mais $V_P(\theta, S, \sigma...)$

• critère d'identification des EA ↔ mécanismes physiques (énergie, amplitude, durée, ...)

y

- Type de roche (argilite) et contexte général de l'étude
- Techniques et montages :
 - Digital Image Correlation
 - Émission acoustique
- Exemples : suivi des déformations et endommagement
 - succion pure
 - compression uniaxiale à différents degrés de saturation
- Conclusions et perspectives

i. suivi des déformations et endommagement au cours d'une succion pure

méthodes des solutions salines (98, 76, 50, 36% RH) dans enceinte thermostatée (limitation de l'influence hydrique et des fluctuation hydrique)

> mesures en continu des évolutions de masse et des déformation (jauges)

"cures hydriques" instrumentées

stabilisation de la masse et déformation = équilibre hydrique ~ 3 à 6 semaines

perte d'eau et retrait géométrique

masse : -2,5%jauges $\begin{cases} \perp_{\text{litage}} : -0,18\% \\ \text{ortho} : -0,08\% \end{cases}$ gain d'eau et expansion géométrique

```
masse : +2,2\%
jauges \begin{cases} \perp_{\text{litage}} : +0,5\% \\ \text{ortho} : +0,2\% \end{cases}
```

Évolution de la microstructure et DIC : A) Observations macroscopiques : déformation de retrait/gonflement avec apparition de fissures pour 98%

état sec (50%RH): retrait avec fermeture de qq fissures existantes

état humide (98%RH): apparition de nombreuses fissures

B) Observations microscopiques : (résultats préliminaires)

50%RH: déformations locales très petites apparition de très peu de micro-cracks (près des hétérogénéités macro)

98%RH :

déformation trop faible, qq nouvelles micro-cracks détectées mais évolution grande du contraste

les images ne sont idéales pour le DIC
enregistrement continu d'images ?

Émission acoustique au cours d'une succion humide (98%RH)

EA associées aux microfissurations observées (humide) lorsque le gradient hydrique (peau/cœur) est important

15mm

- > Type de roche (argilite) et contexte général de l'étude > Techniques : principe, montages et limitations : Digital Image Correlation Émission acoustique Exemples : suivi des déformations et endommagement succion pure compression uniaxiale à différents degrés de saturation
- Conclusions et perspectives

Compression uniaxiale avec extensométrie DIC et EA

Mesures conventionnelles : force, jauges résistives de déformation, déplacement LVDT Champs des déformations : macro DIC et local DIC Endommagement : émission acoustique \$\overline{36mm-H72mm}\$2 méplats polis pour les observations optiques \$\overline{\sigma}\$

macro lens magn x0.1 CCD 1300x1030 field: overall sample microscope magn x10 CCD 2048x2048 field: 1.5×1.5mm²

jauges déformation

0x5mm²

Compressions uniaxiales : réponse macroscopique (jauges-LVDT)

 \geq E et R_c augmentent avec la succion

Comportement différent pour humide (dilatance importante)

Localisation de la déformation macroscopique (1/3) :

Sec (50%RH-S~0,40)

Humide (98%RH-S~0,95)

réponse (quasi) homogène

réponse très hétérogène

Localisation de la déformation microscopique (1/3) : Sec (50%RH-S~0,40)

- champ hétérogène à l'échelle de la structure composite : matrice déformable et grains minéraux rigides
- absences de macro-hétérogénéité et de microcracks

Localisation de la déformation microscopique (2/3) : Sec (50%RH-S~0,40)

Localisation de la déformation microscopique (3/3) :

	S. A. Barris				-15
		and the second			DefEq
and the second second second second					0.00
					0.05
					0.10
					0.15
					0.20
					0.25
			and the second second		0. 30
					0.35
					0.40
and proper	and and				0.45
		COLUMN PROVINCE			0.50
					0.55
					0.60
					0.65
manin period					0.70
					0.75
		and the second			0.80
					0.85
- Creenedar	1				0.90
					0.95
	and served				1.00
				Company and	1.05
					1.10
Contraction of the second	Concernent	********	SECTOR S		1.15
United and the second					1.20
500µm	Sector Sector Sec		的时候,这次 为 为时	in H. Car	
	Start Start and Start	1.4	ALC: NOT THE REAL PROPERTY OF		

Humide (98%RH-S~0,95)

Faible niveau des déformations :
hétérogénéité liée à la microstructure
apparition de peu de microfissures

activité acoustique due à de la friction (micro-fissures existantes) ?

Humide : événements tout le long du chargement (friction ?)

 Sec : pas d'activité EA < 60% de R_c, quelques évènements de forte énergie à 60 - 80% R_c, plus d'activité avec moins d'énergie au delà de 80% R_c
 autres critères : extraire paramètres caractéristiques des salves EA

- Type de roche (argilite) et contexte général de l'étude
- Techniques et montages :
 - Digital Image Correlation
 - Émission acoustique
- Exemples : suivi des déformations et endommagement
 - succion pure
 - compression uniaxiale à différents degrés de saturation
- Conclusions et perspectives

Conclusions (1/2)

 Comportement mécanique en fonction de la saturation :
 ✓ Succion humide : gonflement global avec création de µ-fissures Succion sèche : retrait sans endommagement visible

✓ Effet important du degré de saturation sur les propriétés mécaniques :
 ✓ module et résistance augmentés avec la désaturation

 ✓ sec : comportement macro homogène ; à l'échelle fine, hétérogénéités liées à la structure composite endommagement "ruinant" entre 60-80% R_c.

 ✓ humide : très hétérogène aux échelles Macro et Micro, comportement global "gouverné" par fermeture des fissures.

Conclusions (2/2)

Techniques :

✓ Extensométrie optique Macro/Micro DIC : nouvel éclairage du comportement mécanique, observations locales (jusqu'au µm) sur un champ global centimétrique.

 ✓ Émission acoustique fournit des données mais amélioration du dispositif (algorithme de reconstruction des chemins avec vitesse réelle).

 ✓ Première étape de développement de modèles multi-échelles (matrice+autres minéraux+fissures ...).

Extensions :

- ✓ Anisotropie + Suivi optique en continu au cours de succion
- ✓ Combinaison hydrique et chargements mécaniques
- ✓ Identification et contributions relatives des différents mécanismes de déformation.
- Développement et validation de modèles mul (loi de comportement homogénéisée, calcul des champs
 Investigations 3D sur des essais triaxiaux (volumic DIC on X-Ray CT images?)

compression triaxiale à rupture N.Lenoir, J.Desrues, M.Bornert (Collaboration 3S-LMS)

+4 pendant l'essai (600 secondes) et ... 1 journée de montage (alignement ...) stockage (images seules 1essai=2Go) et plusieurs jours de dépouillement des images !!!