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Partially saturated formations are of interest in a wide variety of scientific scenarios.
Seismic methods have a great potential to help in the remote characterization of such
environments.



Seismic methods for fluid detection
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Elastodynamics:

Hooke’s law:
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Fluid effects on seismic velocities
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P-wave velocity as a function of saturation for a carbonate simple
of 0.3 porosity for two measuring frequencies.
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Moduli are saturation dependent:
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Saturation- and frequency-dependent etfects
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Seismic velocities are frequency-dependent:

I/S((UJ SW) I/p((l), SW) 7?7

Implying that medium is effectively viscoelastic.
Moduli are therefore complex-valued and
frequency dependent, and Hooke’s law holds in
the space-frequency domain:

6;j(w) = Cijx(w, Sy)€xi(w)

P-wave velocity as a function of saturation for a carbonate simple
of 0.3 porosity for two measuring frequencies.
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Fluid coupling etfects on seismic signatures

Phase velocity dispersion
A
Macroscale
z
8 ) . There are mechanisms
> What is causing operating at different
this effect? P &
scales...
\ ) H Mesoscale
Frequency a<<A
Attenuation
g
Microscale
d <<a
Frequency
6




UNIL | Université de Lausanne

Fluid coupling etfects on seismic signatures
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Wave-induced fluid flow
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where D is the diffusivity of the
medium, and [, is the
characteristic length of the
heterogeneities.
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We solve Biot’s (1941) poroelasticity equations in a representative Plane-wave modulus

elementary volume of the rock sample of interest under oscillatory
forcing:

o~
031 (w) = J{Mc(a))}’
R{M,(w)}
-1
[lustration of (a) vertical, and (b) shear oscillatory relaxation tests to ( pb)
obtain the equivalent frequency-dependent moduli of the explored Vp(a)) = |R
medium. M. (w)



Saturation hysteresis and seismic signatures
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Saturation hysteresis and seismic signatures
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(a) Porosity map and (b) distribution of
CO, and water during drainage and
imbibition (Zhang ez al., 2015).
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Saturation hysteresis etfects on the seismic signatures
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Saturation hysteresis etfects on the seismic signatures
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Saturation hysteresis etfects on the seismic signatures
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Saturation hysteresis effects on the seismic signatures
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Saturation hysteresis effects on the seismic signatures

a) ] Drainage b) Imbibition
- 3 -7 SR B T

0.9 gz Drain: 30 Hz
. —— Imbib: 30 Hz
0_7_503 /i = — Drain: 2kHz
08 /1| — — Imbib: 2kHz
05 ;1! —— GH
0.4 v
0.3
1
0.9
0.8
0.7 .5 4250 : ' ' '
0.6 @0 0.5 0.6 0.7 0.8 0.9 1
82 0.02 b Drai.n: 30Hz
——Imbib: 30Hz
0.3 — — Drain: 2kHz
1 0.015 — — Imbib: 2kHz
0.9 -
0.8 0?* 0.01 1
0.7 _5
0.6 0.005
0.5
0.4
0.3 0
0.5

Taken from Solazzi et al (2019) 16



Saturation hysteresis effects

on the seismic signatures
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Fluid coupling etfects on seismic waves
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Squirt tlow ettects

COMPRESSIVE STRESS
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requenc umerical Modelling:
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Squirt flow mechanism:
Attenuation
. /] *  Microcracks can be present in grains.
Squirt Flow *  Fluid presure diffusion occurs between these cracks
and the connected pore space.
g For most sedimentary water-saturated rocks this process

occurs at frequencies larger 10° Hz.
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Squirt flow effects on partially saturated cracks

Representative sample
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a) cracked solid b)

penny-shaped cracks

/.\

Representative sample ] B
of the partially-saturated Elastic isotropic o wetting phase non-wetting phase
cracked solid background (- - ring bubble

c) Distribution of fluids
\.-—/ = o )
— = v J
Elastic isotropic () A l [ — ] | [,
o=

0
background o
o — 3 r,

@ Fig 2: (a) Sketch of the cracked rock and (b)

blowup of a partially saturated crack. (c)
Vertical profile, illustrating the distribution

Fig 1: (2) Granite sample and (b) 3D of the fluid phases within the crack.

CT-scan showing cracks in green
(Fan et al, 2018). (c) Conceptual

Taken from Solazzi et al (2021)
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Squirt flow effects on partially saturated cracks

Cracks behave as if saturated with a
trequency-dependent effective fluid with a
bulk modulus

K}"»(w) = SwKywTw(w) + (1 — Sw) Ky Tn(w)

To(w) and  Tw(w)-e 2 combination of Bessel
tunctions that inciude the crack geometrical
properties, fluid compressibilities K,, and K,
and saturation S,,,.

Partially-sturated
penny-shaped cracks

=

wetting phase non-wetting phase
ring bubble



Modulus dispersion and attenuation as functions of
saturation
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Fig 5: (a) Plane wave modulus R{c33} and (b) inverse quality factor @, 1 as functions of saturation for
vertically travelling P-waves.



Fluid coupling etfects on setsmic signatures
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Biot’s intrinsic mechanism

Biot’s intrinsic mechanism:

A
- E * Acceleration exherted by the passing wave.
=3 ~+  Flow is in the vicosity-dominated regime (Poiseuille flow)
E for f<<fp.
E ~* For much higher frequencies, the flow is inertia-dominated.
0 . E For most sedimentary water-saturated rocks this normally
: 5 x fets >>fg process occurs at frequencies larger than 104 Hz. Dominated
U, =u,smal

by permeability and fluid viscoity.




Biot’s intrinsic mechanism
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Biot’s intrinsic mechanism: Dynamic permeability
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The classic formulation of Darcy’s law only
holds for viscous dominated flow:

If we want to use it for inertial flow, we
need a frequency-dependent and
complex-valued permeability:
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On the dynamic permeability of partially

saturated porous media

While the frequency-dependence of permeability under fully saturated conditions has been studied for decades, the
corresponding characteristics of partially saturated porous media remain unexplored.

Frequency and saturation dependent
permeability estimates

We introduce a capillary pressure-saturation
relationship to saturate the medium

—_Sy=1

| =—S85=0.9
Sy=10.6
| ——85y=03

- = S5y=0
M 104 o Johnson
We conceptualize the pore space as a 6 ot b (1987)
bundle of tubes with a known pore
size distribution
> :
- S=1
q Sn=0.7
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o Johnson
et al. (1987)
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On the dynamic permeability of partially

saturated porous media

Effective permeability functions, as sensed by seismic waves in oscillatory flow, are functions of the saturation and of

the frequency
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Taken from Solazzi et al (2020)




Conclusions

There are several mechanisms that induce frequency dependence in the effective elastic moduli of
fluid saturated porous media.

Wave-induced fluid flow in the mesoscopic scale is a fluid pressure diffusion process. It is modelled
using Biot’s poroelasticity equations. Elastic moduli not only depend on the saturation state but, also,
on the geometry of the fluid distributions.

Squirt flow effects occur due to fluid pressure diffusion at the microscopic scale. It 1s modelled
solving Navier-Stokes equations coupled with the elasticity equations. Elastic moduli depend on the
geometry of the pores, fluid characteristic, and saturation state.

Biot’s intrinsic mechanism is associated with fluid drag produced by an accelerated pore matrix. The
effective permeabilities sensed by the wave in partially saturated conditions are saturation and
frequency dependent.

Understanding the physical reasons behind these processes may permit a better characterization of
the hydraulic and mechanical properties of the explored media using seismic methods.
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Fluid coupling etfects on setsmic signatures
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Seismic Method
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Elastodynamics:
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Biot’s theory of poroelasticity

Representative Elementary
Volume

Variables of Biot’s theory:

U :Solid displacement.

w : Relative fluid displacement

( = —V. w :Variation in the
fluid content

Continuum

Medium

P ¢ :Fluid pressure

O  :Total stress tensor

E . Strain tensor

Giorgiadis el al. (2013
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Biot’s theory of poroelasticity

Constitutive relations

0ij = 2ugi; + 6;j(Acexy — aM(),
pr= —aMey, + MC.

Biot’s poroelastic equations:

V.o = pbu + ,DfW,

Coefficients
04 2
1 oM A
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BioUs theory ol poroelasticity

Constitutive relations Coefficients
04 2

oij = 2ugij + 6;(Acgrk — aM{), - 5

pf= —aMekk +M< c

Biol’s quasi-static equations:

Vo= Supports 3 types of waves

.
—Vpr = W :> P
P,
\ g

Equilibrium of forces and Darcy equation
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Validation of the analytical solution
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Fig 3: (a) Inverse quality factor @, 1 and (b) plane wave modulus R{c33} as functions of frequency for

vertically travelling P-waves. Background properties are taken from a Westerly Granite characterized by a
fracture density of & = 4.6X1073. Cracks have an aspect ratio @ = 3.6X1073 and an aperture hg = 10 um.
Fluids properties are those of glycerin and air.



Fluid coupling etfects on setsmic signatures
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Gassmann’s equations

Gasssmann’s (1951) model:

(1 B Kdry/Kg)z
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sat ry Ki n (1IE¢) n
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Gassmann’s (1951) low-frequency model
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Fluid effects on seismic signatures

There are three main dissipation processes associated with fluid/solid coupling:

* |Intrinsic Biot’s mechanism
Take place in a homogeneous and fully-saturated

> porous media, and are modified in presence of partial saturation.

* Squirt flow mechanism

/

* Fluid pressure diffusion in the mesoscopic scale

\ 4

Does not take place in homogeneous and fully-saturated media. However, it
arises in partial saturation scenarios!
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Fluid content and Seismic Signatures

Partially saturated

medium

Solid Grains

e 4
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Seismic Signatures
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Hydraulic properties
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Fluid coupling etfects on setsmic signatures
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