



# Modélisation numérique de la sismicité induite par la stimulation hydraulique des réservoirs géothermiques

#### Frederic L. PELLET, Dac T. NGO, Dominique BRUEL

MINES ParisTech - PSL Research University - France

14 mars 2019

## Geotref

Plate-forme pluridisciplinaire d'innovation et de démonstration pour l'exploration et le développement de la GEOThermie haute énergie dans les REservoirs Fracturés



Améliorer la compréhension du fonctionnement des réservoirs géothermiques fracturés :

**En phase d'exploration :** maîtriser le risque lié aux investissements importants pour la réalisation de forages sans avoir la certitude de mettre en évidence une ressource géothermique économiquement exploitable, **En phase de production :** garantir une exploitation durable du réservoir.

... et avec le soutien de



## **Outlines**

- Introduction to deep geothermal system
- Simulation scenarii and theoretical background
- Fracture propagation and fault slip due to hydraulic stimulation
- Induced dynamic effects and wave propagation
- Conclusions

\* Ngo, D.T. et al. (2019), Modeling of fault slip during hydraulic stimulation in a naturally fractured medium, Geomechanics and Geophysics for Geo-Energy and Georesources, *In Press* 

\*

# Introduction to deep geothermal system

## Introduction to deep geothermal systems

#### **Reservoirs characteristics:** *Few km in depth, Mostly in <u>igneous rocks</u>*



Required properties for an EGS reservoir (Rybach, 2010)

| Property                              | Value                                |  |
|---------------------------------------|--------------------------------------|--|
| Fluid production rate                 | 50 – 100 L/s                         |  |
| Wellhead temperature                  | 150 – 200 °C                         |  |
| Total effective heat exchange surface | > 2 x 10 <sup>6</sup> m <sup>2</sup> |  |
| Rock volume                           | > 2 x 108 m <sup>3</sup>             |  |
| Flow impedance                        | < 0.1 MPa/(L/s)                      |  |
| Water loss                            | < 10%                                |  |

Fluid circulation over 20 to 30 years

Create a large exchange surface



Hydraulic stimulation

Red: HF Blue: NF

## **Introduction to Deep Geothermal Systems**

#### **Associated Risks:** Fault Reactivation - Induced Seismicity



Basel 2006, M<sub>L</sub> = 3.4





 $M_L < 2$  (France)

Modified Mercali intensity scale and corresponding peak ground acceleration and peak ground velocity

Source: (Wald et al., 1999; Wood and Neumann, 1931)

| Interaint | Peak acceleration | Peak velocity | Perceived | Potential  |
|-----------|-------------------|---------------|-----------|------------|
| intensity | (% g)             | (cm/s)        | shaking   | damage     |
| I         | < 0.17            | < 0.1         | Not felt  | None       |
| -         | 0.17-1.4          | 0.1-1.1       | Weak      | None       |
| IV        | 1.4-3.9           | 1.1-3.4       | Light     | None       |
| V         | 3.9-9.2           | 3.4-8.1       | Moderate  | Very light |
| VI        | 9.2-18            | 8.1-16        | Strong    | Light      |
| VII       | 19_2/             | 16_21         | Very      | Moderate   |
|           | 16-54             | 10-31         | strong    |            |
| VIII      | 34–65             | 31-60         | Severe    | Moderate   |
|           |                   |               |           | to heavy   |
| IX        | 65-124            | 60-116        | Violent   | Heavy      |
| Х+        | >124              | >116          | Extreme   | Very heavy |

## **Introduction to Deep Geothermal Systems**



#### **Examples of induced seismicity in EGS**

Pressure drops and their associated burst of seismicity at Rittershoffen (Meyer et al, 2017)



Front view of the seismic cloud of the EGSsystem at Rosemanowes (Parker, 1989)

# Simulation scenarii and theoretical background

## **Sequences of hydraulic stimulation**

Fracture initiation and propagation



## **Sequences of hydraulic stimulation**

**Connection to Fracture Networks: Hydraulics Flow** 



## **Sequences of hydraulic stimulation**

Fault reactivation and seismic waves



## **Numerical Simulation Technique**

- Initiation and propagation of new fractures
- Deformation of the porous rock mass
- Flow of the fluid within the fractures
- Flow of the fluid within the pores
- Reactivation of existing faults
- Seismic wave propagation
- Heat transfer

### Finite Element Analysis (Abaqus)

#### Initiation and propagation of new fracture (Mode I)



after Labuz et al. (1985), modified by Lisjak-Bradley (2013)



#### Cohesive material concept

(Hillerborg, 1976)



#### Fracture initiation criterion:

$$\sigma'_{\rm max} = R_T$$

G<sub>Ic</sub>: Energy release rate

Deformation of porous rock (thermal effect ignored)

$$\sigma_{ij} - \sigma_{ij}^{0} = \left(K - \frac{2}{3}G\right)\varepsilon_{V}\delta_{ij} + 2G\varepsilon_{ij} - b\left(p - p_{0}\right)\delta_{ij}$$

$$\sigma_{ij}^{'} - \sigma_{ij}^{'0} = \left(K - \frac{2}{3}G\right)\varepsilon_V \delta_{ij} + 2G\varepsilon_{ij}$$

$$\sigma'_{ij} = \sigma_{ij} - bp\delta_{ij}$$

$$b = 1 - \frac{K}{K_s}$$

 $\nabla . \sigma_{ij} = 0$ 

• *K* and *G* are the bulk modulus and the shear modulus of the skeleton

 b is the Biot's coefficient, which is related to the bulk modulus K of the skeleton and the bulk modulus K<sub>s</sub> of the solid phase

#### Fluid flow within hydraulic fractures and faults

$$\frac{\partial w}{\partial t} + \frac{\partial q}{\partial s} + g = 0$$

$$g(\mathbf{x}, t) = \frac{2C_L}{\sqrt{t - t_0}}$$

$$q = -\frac{w^3}{12\eta} \frac{\partial p}{\partial s}$$
Poiseuille eq.
$$k_t = \frac{w^3}{12\eta}$$
Transmissivity
$$g(\mathbf{x}, t) = \frac{\partial (w^3 - \partial (w^$$

S ~

#### **Reactivation of critically stress faults**

 $R_{s} = \mu \sigma_{n}$ 

**Coulomb friction law** 

Others models: stick slip, rate and state



Effective normal stress(S<sub>n</sub> - P<sub>p</sub>)

#### Seismic wave propagation

$$\nabla .\sigma + \rho g = \rho \frac{\partial^2 u}{\partial t^2} \qquad \qquad C_P = \sqrt{\frac{E}{\rho}} \qquad \qquad C_S = \sqrt{\frac{G}{\rho}}$$

# Simulation of fracture propagation and fault slip due to hydraulic stimulation

## Slip induced by injection in a single fault model

#### The sketch is not to scale ! $\int S_v$ 120 m 30 m HF2 $S_{\mathrm{H}}$ $S_{\mathrm{H}}$ F1HF1 200 m **↓**Q θ = 22 ° 10 m 80 m 120 m ▲ 2 $\hat{I}$ $S_v$

**2D coupled stress-transient diffusion** 

#### After Atkinson 1989, Keshavarz 2009, Meyer 2017

| Property                     | Value                                         |  |
|------------------------------|-----------------------------------------------|--|
| Rock mass                    |                                               |  |
| Young's modulus              | E = 30 GPa                                    |  |
| Poisson's ratio              | v = 0.22                                      |  |
| Biot's coefficient           | b = 1.0                                       |  |
| Porosity                     | φ = 0.01                                      |  |
| Hydraulic conductivity       | k = 1.1x10 <sup>-16</sup> m <sup>2</sup>      |  |
| Cohesive material (HF1, HF2) |                                               |  |
| Tensile strength             | R <sub>T</sub> = 2.0 MPa                      |  |
| Mode I fracture energy       | G <sub>IC</sub> = 62 N/m                      |  |
|                              | (K <sub>IC</sub> = 1.4 MPa.m <sup>0.5</sup> ) |  |
| Cohesive material fault F1   |                                               |  |
| Hydraulic aperture           | 0.4 mm                                        |  |
| Friction coefficient         | μ <sub>f</sub> = 0.35                         |  |
| Fracturing and pore fluid    |                                               |  |
| Dynamic viscosity            | η = 0.001 Pa                                  |  |
| Density                      | ρ = 1000 kg/m <sup>3</sup>                    |  |
| Initial conditions           |                                               |  |
| Initial stresses             | S <sub>h</sub> = 29, S <sub>v</sub> = 36 MPa  |  |
| Initial pore pressure        | p <sub>o</sub> = 23.7 MPa                     |  |
| Injection rate               | Q = 0.5 L/s per unit                          |  |
|                              | thickness                                     |  |

## Pore pressures at different times

Case with  $\mu_f = 0.35$ , Q = 0.5 L/s, and  $\theta = 22^{\circ}$ 



#### The hydraulic fracture HF1 is generated and extends



## HF1 intersects the fault F1 after 35.1 s of injection

#### Pore pressure (Pa)

|  | - +5.50e+07 |
|--|-------------|
|  | - +5.00e+07 |
|  | - +4.50e+07 |
|  | - +4.00e+07 |
|  | - +3.50e+07 |
|  | – +3.00e+07 |
|  | – +2.50e+07 |
|  | – +2.00e+07 |
|  | – +1.50e+07 |
|  | └ +1.00e+07 |



#### The hydraulic fracture HF2 is initiated

### Time evolution of pressures and hydraulic apertures



Case with  $\mu_f$  = 0.35, Q = 0.5 L/s, and  $\theta$  = 22°



- (a) Injection pressure (BHP) and fluid pressure at the center of the fault F1
- (b) Hydraulic aperture at injection point and at the center of the fault F1
- (c) Distribution of fluid pressure along path that consists of fracture HF1, fault F1, and fracture HF2 at different times











- (a) Injection pressure (BHP) and fluid pressure at the center of the fault F1
- (b) Distribution of fluid pressure along path that consists of fracture HF1, fault F1, and fracture HF2 at different times
- (c) Slip rate of the fault F1

Effect of fault orientation ( $\mu_f = 0.65, Q = 0.5 L/s$ )





- (a) Accumulative slip as a function of time
- (b) Slip rate of the fault F1 with different fault orientation angle from 10° to 45°

## Pore pressure distribution at different times for different fault orientation



Case Z4:  $\theta = 45^{\circ}$ 

# Slip induced by interaction of hydraulic fractures with multiple faults

The sketch is not to scale !



- 3 existing faults F1, F2 and F3, which are all oriented at 22° from the X direction
- Far-field stresses  $S_H = 36$  MPa and  $S_v = 29$  MPa

## Pore pressure at different times

#### Case 1 with $\mu$ = 0.35; Injection rate = 0.5 L/s

Pore pressure (Pa)



### Time evolution of pressures and hydraulic apertures





Simulation results of case (friction coefficient  $\mu_f = 0.65$ ): time evolution of

- (a) injection pressure and fluid pressure at the center of faults F1, F2, F3
- (b) hydraulic aperture at injection point and at the center of faults F1, F2, F3
- (c) Distribution of fluid pressure along path that consists of fracture HF1, fault F1, and fracture HF2 at different times



#### **Effect of friction coefficient**



# Time evolution of injection pressure and fluid pressure at the center of faults F1, F2, F3

#### Effect of injection rate



#### Effect of injection rate



with hydraulic fractures 31

# Simulation of induced dynamic effects and wave propagation

## Induced dynamic effects and wave propagation

#### Model for dynamic simulation

#### The sketch is not to scale !



#### 2D Dynamic FEA (Abaqus)

| Property                  | Value                     |  |
|---------------------------|---------------------------|--|
| Undrained Young's modulus | E <sub>u</sub> = 36.9 GPa |  |
| Undrained Poisson's ratio | v <sub>u</sub> = 0.5      |  |
| Dilatational wave speed   | C <sub>p</sub> = 3767 m/s |  |
| Shear wave speed          | C <sub>S</sub> = 2174 m/s |  |
| Saturated density         | ρ = 2600                  |  |
| Saturated density         | kg/m <sup>3</sup>         |  |

#### Loading : the time history of fault displacements

**Quiet Boundary Conditions** 

## Time evolution of acceleration at points B, C, and D

#### in direction 1

in direction 2





Arrows indicate the arrivals of elastic waves: left arrow for P waves; right arrow for S waves

## Acceleration in direction 1 at different times

• Arrival of P waves to the top surface and generation of surface waves (Only the upper part of the model is presented)



• Arrival of S waves to the top surface and generation of surface waves (The whole model is presented)



# Peak Ground Acceleration at points B, C, and D as function of friction coefficient



# Peak Ground Acceleration at points B, C, and D as function of injection rate



## **Summary and Conclusion**

• A methodology has been developed to model induced seismicity during the hydraulic stimulation of deep geothermal reservoir.

| Peak acceleration | Peak velocity                   | Perceived                                                                   | Potential                                                                                                |
|-------------------|---------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| (% g)             | (cm/s)                          | shaking                                                                     | damage                                                                                                   |
| < 0.17            | < 0.1                           | Not felt                                                                    | None                                                                                                     |
| 0.17-1.4          | 0.1-1.1                         | Weak                                                                        | None                                                                                                     |
| 1.4-3.9           | 1.1-3.4                         | Light                                                                       | None                                                                                                     |
|                   | <pre>// Peak acceleration</pre> | Peak acceleration<br>(% g)         Peak velocity<br>(cm/s)           < 0.17 | Peak acceleration<br>(% g)         Peak velocity<br>(cm/s)         Perceived<br>shaking           < 0.17 |

• It is found that both the friction coefficient of existing faults and the rate of injection play a major role on the fault slip rates and eventually on the Peak Ground Acceleration and Velocity (Smooth Stimulation)

Next:

• Extrapolation to geothermal reservoir with real DFN with accounting for uncertainties





## Merci de votre attention !