GÉOMÉCANIQUE APPLIQUÉE À LA CARACTÉRISATION DE RÉSERVOIRS DANS DES FORMATIONS GÉOLOGIQUES À STRUCTURE COMPLEXE : ILLUSTRATION PAR LE STOCKAGE GÉOLOGIQUE DU CO₂

NICOLAS GUY AXELLE BARONI AUDREY ESTUBLIER FLORENCE DELPRAT-JANNAUD OLIVIER VINCKÉ

OUTLINE

About geomechanical coupling
 Coupling fluid flow and geomechanics
 Coupling approaches
 The case of continuous models: illustration on SAGD process

The case of non-continuous models, overview of faults and geomechanical modeling

- Workflow to model fault in reservoir context
- •Some methods from basin modeling context
- An example of fault modeling in a reservoir context: application to CO₂ storage

Conclusions and perspectives

COUPLING FLUID FLOW AND GEOMECHANICS

• Historical reservoir approach

- No stress equilibrium
- Simplified geomechanics integrated in dynamic fluid flow simulator
 - Pressure-temperature-vertical stress / porous volume dependency
 - Pressure-temperature / permeability dependency

• Real coupling objectives

- Well stability
- Faults reactivation/sliding
- Caprock integrity/overpressures
- Subsidency
- Effect of geomechanics on fluid flow
- Fracturing and fracture opening/closing

COUPLING APPROACHES

Algorithms

Zandi et al. 2011

SAGD PROCESS: PRINCIPLE

Involve thermal multiphase flow (here considering a dead oil model) eventually in an heterogeneous media
 Significant geomechanical effects

AN EXAMPLE OF EXPLICIT COUPLING

Key phenomena: fracturing, fracture opening/closing, dilatancy

Lerat et al. 2010

Steam chamber (100°C) after 6 months of production

Sequential coupling with similar geometry in the reservoir area has a strong influence on steam chamber shape

Geomechanical Model EXAMPLE WITH: Vertical displacement on Sequential iterative coupling deformed grid Diffuse approximation Separate grids for Reservoir and method Geomechanics (here, AMR reservoir grid) **Diffuse Approximation Method Reservoir AMR-model Oil Saturation** P, T, S Κ, φ

HANDLING FAULT MODELING

Major issues

Meshing

- In reservoir, stair stepping with CPG grid are not suited for geomechanical computation
- **O** ...

Defining properties

- Permeability/conductivity along and across the fault
- Mechanical properties
- The fault material is mostly unknown
 - → A solution for flow related properties in basin context

CARBON CAPTURE AND STORAGE

One of the key options to reconcile the rising demand for fossil fuels with the need for reducing greenhouse gas emissions in the transition to a low-carbon economy

Fight against the climate change by decarbonising the energy mix

Source: IEA, 2014. Energy Technology Perspectives 2014.

har SITECHAR - CHARACTERIZATION OF EUROPEAN CO₂ STORAGE

Provide the key steps required to make on-time effective large-scale implementation of CO₂ storage in Europe

- Demonstrate the level of geological characterization and the assessment of long-term storage complex behaviour in accordance with the regulatory requirements (EC Storage Directive)
- Develop a methodology for the preparation of storage permit applications, accounting for all the technical and economic data, as well as the social dimension
- Raise public awareness and enable informed opinion formation

MODELING OF FAULT IN RESERVOIR CONTEXT

Top view of the reservoir simulator grid

- One-way coupling
- CPG Reservoir grid built to be compatible with geomechanics
- o Geomechanical model meshed up to the surface
- Fault modeled by porous cohesive elements in Abaqus

HANDLING FAULT IN RESERVOIR AND GEOMECHANICAL MODELS

Cohesive elements for geomechanical computations

Compatible fault representations

Baroni et al. 2015

Faults are complex elements and require various representations to make compatible the geometries required by the geomechanical and the fluid flow modelling

MODELING OF FAULT IN RESERVOIR MODEL

Fault thickness is deduced from displacement between both sides considering correlations Wybberley et al. 2008

14

© 2016 IFP

Fault geometry in the reservoir should allow flow along and across the fault with an

MODELING OF CO₂ INJECTION

The modeling is done over 30 years. CO₂ is injected into Grazia reservoir during 10 y, with an injection rate of 1 Mtonne/year

Four regional stress states (=initial state) are considered SS0, SS45, SS135 & NF

3D overpressure (bar) at 12 years (OAb – OPEN FAULT scenario)

Baroni et al. 2013

GAS SATURATION IN TWO SCENARIO

PORE PRESSURES

MODIFICATION OF THE STRESS STATE IN THE FAULT

Post-processing allows the estimation of the fault reactivation through comparing the final stress state with the Mohr-Coulomb criteria for instance. Computation, results show Δ Crit=Crit_{END}-Crit_{INI} : if Δ Crit>0, the area get closer to the criteria.

 $\Delta Crit$ parameter on Rovesti

If Δ Crit>0, the area get closer to the criteria.

MODIFICATION OF THE STRESS STATE IN THE FAULT

Post-processing allows the estimation of the fault reactivation through comparing the final stress state with the Mohr-Coulomb criteria for instance. Computation, results show Δ Crit=Crit_{END}-Crit_{INI} : if Δ Crit>0, the area get closer to the criteria.

∆Crit parameter on Rovesti

If Δ Crit>0, the area get closer to the criteria.

FAULT PROPERTIES IN BASIN MODELING

• Aim of basin modeling

→ Get a better understanding of actual basin state through the modeling of basin history to estimate overpressures and trap location

• Through the simulation of

- Heat transfer and fluid flow
- Simplified geomechanics (presently)
- With sedimentation and erosion

On an evolving geometry considering

- Finite strain
- Flow along and across faults

Phase 1: restoration
Considering geometric criterion (*Kronos/Kine3D*)
Phase 2: Forward simulation
Considering all the embedded physics (*ArcTem*)

FAULT PROPERTIES DEFINITION IN BASIN MODELING

- Kinematics is used to compute Shale Gouge Ratio
- Shale Gouge Ratio is used to compute fault properties
- Fault properties are used for simulations

Faille et al. 2014

ENHANCE FAULT PROPERTIES DEFINITION WITH WORKFLOW FROM BASIN MODELING

Shale Gouge Ratio

Reject

Along permeability

The workflow allows to a heterogeneous description of fault permeability which is more realistic

ENHANCE FAULT PROPERTIES DEFINITION WITH WORKFLOW FROM BASIN MODELING

The effect of fault heterogeneity on stress modification is very significant

MAIN PERSPECTIVES

• Use the SGR based workflow to define mechanical properties of faults

Compute the mechanical fault properties considering fault SGR and Reject OBJECTIVE: improve the relevancy of fault stability analysis

Enhance coupling between Pumaflow and ABAQUS with the Co simulation System (CSS) PumaElow

Coupling PumaFlow and Abaqus using the CSS, a C++ based coupling tool OBJECTIVE: significant usability enhancement and computation time decrease

CONCLUSIONS

- Reservoir modeling, tools are available to
 - Take into account the effect of geomechanics on fluid flow in a continuous context
 - Evaluate the risk of fault reactivation
- Future work
 - Improve the workflow usability in the context of faults
 - Build a workflow to automatically define fault geomechanical properties
 - Enhance coupling geomechanical coupling usability and performance with CSS
- Ongoing work (not mentioned here)
 - Workflow to compare to both seismic and well data

- Lerat, O., F. Adjemian, A. Baroni, G. Etienne, G. Renard, E. Bathellier, E. Forgues, F. Aubin and T. Euzen. 2010. Modelling of 4D Seismic Data for the Monitoring of Steam Chamber Growth During the SAGD Process. Journal of Canadian Petroleum Technology 49: 21-30.
- Zandi, S. 2011. Modélisation des effets géomécaniques de l'injection de vapeur dans les réservoirs de bruts lourds. PhD Dissertation, Ecole des Mines ParisTech, Paris.
- Guy, N, G. Enchery and G. Renard. 2012 Numerical modelling of thermal EOR: comprehensive coupling of an AMR-based model of thermal fluid flow and geomechanics. Oil & Gas Science and Technology, 67(6): 1019-1027.
- Delprat-Jannaud, F., J. Pearce, M. Akhurst, C.M. Nielsen, F. Neele, A. Lothe, V. Volpi, S. Brunsting and O. Vincké. 2015. SiteChar Methodology for a Fit-for-Purpose Assessment of CO2 Storage Sites in Europe. Oil & Gas Science and Technology, 70(4):531-554.
- A. Baroni, A. Estublier, J.F. Nauroy, F. Delprat-Jannaud, S. Kuczynski, I. Larsen, A. Lavrov, V. Volpi, and E. Forlin. 2013. Report of SiteChar Characterisation of European CO2 storage, Fluid flow modelling coupled with geomechanics, Southern Adriatic site.
- Baroni, A., A. Estublier, O. Vincké, F. Delprat-Jannaud and J.F. Nauroy . 2015. Dynamic fluid flow and geomechanical coupling to assess the CO₂ storage integrity in faulted structures. Oil & Gas Science and Technology, 70(4):729-751.
- Wibberley, C., Yielding, G. and Di Toro, G. (2008), Recent advances in the understanding of fault zone internal structure: a review, The Geological Society of London, Special publications, V. 299, pp. 5-33
- Faille, I., M. Thibaut, M.-C. Cacas, P. Havé, F. Willien, S. Wolf, L. Agelas and S. Pegaz-Fiornet, 2014. Modeling Fluid Flow in Faulted Basins. Oil & Gas Science and Technology, 69(4):529-553.
- Rudkiewicz, J.L., J.F. Lecomte, J.M Daniel, C. Borgese, M. Latourrette, M. Guiton, Wan-Chiu Li, and S. Jayr. 2012. Search and Discovery.
- PDGM. http://www.pdgm.com/resource-library/brochures/kine3d/kine3d/

Innovating for energy

Find us on:

www.ifpenergiesnouvelles.com

@IFPENinnovation

