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Fluid and Fault project

• Objective of the project: to constrain a relationship
relating permeability, pressure, stress and strain in fault
zones in shale.

• Does the permeability only depend on fluid pressure and
the minimum in-situ stress?

• Do we need to take into account “limited” shear-
reactivation of natural discontinuities to explain fluid
migration?

• Are the hydraulic response and the plastic behavior of
discontinuities always associated?
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Tournemire test site (IRSN)

Shales with 
50% of clay 
content Illite 
and Chlorite
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Injection: fluid pressure and strain 
monitoring

Injection Hole : HPPP probe
3 dimensionnal deformation of an open hole
coupled with fluid pressure 
measurements

Length 5.3 m

Gate

Diameter 100mm

Full scale
[10-6 – 10-3m] displacements
[0 – 70°C] temperatures
[0 – 70 bars] pressures

Inflatable
packer

Inflatable
packer
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Map view of the experiments
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West damaged zone: TEST-1

N0 – 80°W
N20 – 20-to-40°W
N110-to-140 – 60-to-30°N or S

HTPF method (Cornet, 2000): 
• σ1≈ 4 MPa, horizontal and oriented N162��15�E, 
• σ2 ≈ 3.8 MPa, sub-vertical (plunge=83-82� and azimuth=N072�) and 
• σ3 ≈ 2.1 MPa, plunge=7-8� and azimuth N072�. 
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West damaged zone: TEST-1
R
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Map view of the P- (left panels, a and b) and S-wave (right panel, c and d) 
velocity variations observed during test 1

De Barros et al., 2018
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Fluid dynamics – flow across fault

Localization of leaks in the tunnel (test series TEST1 and TEST5).

No leak when injecting in the western compartment (TEST2) or the core zone (TEST3-6) 
The fault acts as a barrier for flow
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Test-1: Discrete Element Model using 3DEC

All discontinuities model

Main secondary fault+ 
sub-vertical fractures

Main secondary fault+ 
sub-horizontal fractures

10 m
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Numerical results: irreversible displacements!

Pour chaque dépression, des 
dizaines de milliers de m3 de 
H2 s’échappent chaque jour
(Soshki/Krivka, 200 kms sud 
de Moscou)
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Permeability evolution
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Permeability evolution
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Reversible 
deformation!
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Surface roughness of fractures?

De Dreuzy et al., 2012
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Numerical modeling with surface roughness
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From fluid channeling to the mechanical 
instability

Prinzhofer et al., 2019
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Injection pressure (blue lines), flow rate (green lines), and event hypocenter 
distance (red dots) versus time for the five injection tests. 

De Barros et al., 2016
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Microseismic events
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Cumulated and maximum seismic moment (red and green symbols), 
deformation moment and predicted volume moment (blue and black symbols) 

Injected fluid

Error bars related to S 
(rupture surface) and D 
(displacement)
uncertities

De Barros et al., 2018

McGarr (2014) prediction
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Dual processes for fluid-induced seismicity, as inferred from the 
in-situ experiments

Opening fluid channels: 
reversible deformation?


