

Fatigue THM-C des bâtiments historiques : entre les mythes et les réalités

Dashnor HOXHA,

Avec la collaboration de Duc-Phi DO, Naima Belayachi, Hoang Ha,

> Laboratoire de Mécanique « Gabriel Lamé » Polytech'Orléans, 8 rue Léonard de Vinci, 45072 Orléans Université d'Orléans, France

Plan

1 – Motivation

2 – Investigation de quelques mécanismes de dégradation des pierres :

- Contrainte thermo-hydro-mécanique
- Hétérogénéité et variabilité des propriétés physiques
- Interaction hydro-mécano-chimique avec l'environnement
- 3- Conclusions

Plan

1 – Motivation

2 – Investigation de quelques mécanismes de dégradation des pierres :

- Contrainte thermo-hydro-mécanique
- Hétérogénéité et variabilité des propriétés physiques
- Interaction hydro-mécano-chimique avec l'environnement
- 3- Conclusions

1- MOTIVATION

 $CO_2 + H_2O \rightarrow H_2CO_3$ $H_2CO_3 + OH^- \rightarrow HCO_{\overline{3}} + H_2O$ $HCO_{\overline{3}} + OH^- \rightarrow CO_{\overline{3}}^{2-} + H_2O$

 $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O \qquad \text{portlandite}$

 $\text{CSH}+\text{CO}_2 \rightarrow \text{CSH}'+\text{CaCO}_3+\text{H}_2\text{O}$

tobermorite

-Pas de sources locales anthropologiques connues ni de conditions particulaires pour expliquer la dégradation ,

Credits : http://www.crmd-sa

1- MOTIVATION

CRACK & DEFORMATION FISSURE & DÉFORMATION	DETACHMENT DÉTACHEMENT	FEATURES INDUCED BY MATERIAL LOSS FIGURES INDUITES PAR UNE PERTE DE MATIÈRE	DISCOLORATION & DEPOSIT ALTÉRATION CHROMATIQUE ET DÉPÔT	BIOLOGICAL COLONIZATION COLONISATION BIOLOGIQUE
CRACK . FISSURE	BLISTERING . BOURSOUFLURE	ALVEOLIZATION . ALVÉOLISATION	CRUST . CROÛTE	BIOLOGICAL COLONIZATION .
Fracture . Fracture	BURSTING ECLATEMENT	Coving . Creusement	Black crust . Croûte noire	COLONISATION BIOLOGIQUE
Star crack . Fissuration en étoile			Salt crust . Croŭte saline	ALGA . ALGUE
Hair crack . Microfissure	DELAMINATION . DELITAGE	EROSION . ÉROSION Differential erosion . Erosion différen- tielle Loss . Perte : of components . de constituants of matrix . de matrice		LICHEN LICHEN
Craquele . Craquellement	Extoliation . Extoliation		DEPOSIT . DÉPÔT	
Splitting . Clivage	DISINTEGRATION . DÉSAGRÉGATION Crumbling . Emiettement		DISCOLOURATION . ALTÉRATION CHROMATIQUE	MOSS . MOUSSE
DEFORMATION . DÉFORMATION				MOULD . MOISISSURE
			Colouration . Coloration	DI ANT PLANTE
	Granular disintegration . Désagrégation granulaire Powdering, Chalking . Pulvèrulence, Farinage Sanding . Désagrégation sableuse Sugaring . Désagrégation saccharoïde	Rounding . Erosion en boule Roughening . Augmentation de rugosité	Bleaching . Décoloration	FLANT. TOANTE
			Moist area . Assombrissement dù à l'humidité	
		MECHANICAL DAMAGE .	Staining . Tache	
		DEGĂT MECANIQUE	EFFLORESCENCE . EFFLORESCENCE	
		Impact damage . Trace d'impact	ENCRUSTATION . ENCROÛTEMENT	
	FRAGMENTATION .	Cut . Incision	Concretion . Concrétion	
	FRAGMENTATION	Scratch . Rayure		
	Splintering . Fragmentation en esquilles	Abrasion Abrasion	FILM . FILM	
	Chipping . Epaufrure	Keying . Bûchage	GLOSSY ASPECT . ASPECT LUISANT	
		MICROKARST . MICROKARST	GRAFFITI . GRAFFITI	
	SCALING . DESQUAMATION	MISSING PART . PARTIE MANQUANTE	PATINA . PATINE	
			Iron rich patina . Patine ferrugineuse	
	Contour scaling Desquamation on plaque	tour scaling , Desquamation en plaque		

ICOMOS-ISCS : Glossaire illustré sur les formes d'altération de la pierre (2010)

JUDILUNESCENCE

Portugal, Coimbra, Largo de Santa Clara, 2004. LRMH / Véronique Vergès-Belmin

8 Octobre 2020

Quels mécanismes pour quelle dégradation ?

Quelles évidences des mécanismes supposés ?

Comment vérifier ces hypothèses ?

Comment quantifier l'impact de ces mécanismes?

Plan

1 – Motivation

2 – Investigation de quelques mécanismes de dégradation des pierres :

- Contrainte thermo-hydro-mécanique
- Hétérogénéité et variabilité des propriétés physiques
- Interaction hydro-mécano-chimique avec l'environnement
- 3- Conclusions

Usually derived from a rigourous thermodynamic framework:

- state functions
- state variables
- thermodynamic principles

Principal hypothese

H-M-T-C additif potentials

H-M-T-C additif potentials

Coussy (2005)

H-M mixed potential of a fully saturated porous elasto-plastic material

$$W^{\#} = W^{0} + \frac{1}{2} \left(\underline{\underline{\varepsilon}} - \underline{\underline{\varepsilon}}^{p} \right) \underbrace{\underline{C}}_{\underline{\underline{\omega}}} : \left(\underline{\underline{\varepsilon}} - \underline{\underline{\varepsilon}}^{p} \right) - \left(p - p_{0} \right) \underline{\underline{B}} : \left(\underline{\underline{\varepsilon}} - \underline{\underline{\varepsilon}}^{p} \right) - \frac{1}{2M} \left(p - p_{0} \right) + \psi^{p} \left(V_{k} \right)$$

State equations ((isothermal conditions)

For a partially saturated porous material (isothermal conditions)

- Multiphase flaw

2-INVESTIGATION : Contrainte THM

Mutiphase equilibre

✓ Kelvin law:

parfait gases (air and water vapor)

$$P_{C} = \frac{\rho_{l}.R.T}{M_{l}^{ol}} \ln(Hr)$$

POLYTECH°

ORLÉANS

For non-isothermal conditions

$$\underline{\sigma'} = \underline{\sigma} + b\pi \underline{I} + 3\alpha K \Delta T \underline{I}$$
 thermics
hydrics

- **Thermal diffusion** $\underline{q} = -\lambda_T \nabla(T)$ Fourier law

$$\sum_{i} h_{i}^{m} \cdot \dot{m}_{i} + \sum_{i} div \left(h_{i}^{m} \underline{M}_{i} \right) + div \left(\underline{q} \right) + Q' = \Theta \qquad \text{Energy conservation}$$

i = liquid, dry air, vapour, dissolved gas

Coherent conclusions , but :

POLYTECH

"The moisture lag areas speed up the moisture movement in a localized zone and they facilitate the local degradation of the individual bricks"

The mechanically induced stresses are overall geometry dependent and they change with different brick size and mortar thickness. Hence, it is straightforward to find out the hot zones at the brick corners

H. Rxxx & J.Jxxx Environmentally motivated modeling of hygro-thermally induced stresses in the layered limestone masonry structures: Physical motivation and numerical modeling, Acta Mech 220, 107–137 (2011) CFMR, 8 Octobre 2020

Material parameters (stone and mortar)

✓ Most of parameters identified from laboratory tests.

✓ Some are calibrated from in situ measurement)

		Stone tuff	Mortar
Mechanics	Young's modulus Poisson coefficient	E ₀ =1953 MPa v ₀ =0.19	$E_{m} = 1604 \text{ MPa}$ $v_{m} = 0.205$
Hydraulics	Intrinsinc permeability Porosity Fick's diffusion coefficient		
Thermics	Thermal conductivity Specific heat	$\lambda = 0.56 \text{ W.m}^{-1}.\text{K}^{-1}$ C _p =800 J.kg ⁻¹ .K ⁻¹	$\lambda = 0.56 \text{ W.m}^{-1}.\text{K}^{-1}$ C _p =800 J.kg ⁻¹ .K ⁻¹
	Biot's coefficient	b=0.5	b=0.5
	Retention curven=1.3Pr =0		n=1.37 Pr =0.013 MPa
	Relative permeability	m=3 $k_l^{rel}(S_l) = S_l^m;$ $k_g^{rel}(S_l) = (1 - S_l^m)$	m=3
Coupling THM	Thermal expansion coefficient	α=6 x 10 ⁻⁶ K ⁻¹	$\alpha = 12 \times 10^{-6} \mathrm{K}^{-1}$

Temperature variation in stone-mortar interface

Liquid saturation at interface

10-2

régime A

régime B

2-INVESTIGATION : Contrainte THM

The stress values are inferiors to the limits of strength materials

 $da/dN = C(\Delta K)^m$

However stress variation due to meteorological factors are to be studied carefully

Damage by fatigue ? Subcritical crack growth ?

Paris law of fatigue :

It is possible to make prediction of time to failure

Taking account for the spatial variation of parameters on the wall

Plan

1 – Motivation

2 – Investigation de quelques mécanismes de dégradation des pierres :

- Contrainte thermo-hydro-mécanique
- Hétérogénéité et variabilité des propriétés physiques
- Interaction hydro-mécano-chimique avec l'environnement

3- Conclusions

2-INVESTIGATION : Couplage THM-C

Mécanisme de formation d'une altération en plaque

(D'APRES BRUNET-IMBAULT, 1999 ET RAUTUREAU, 2001

Simulation expérimental de formation de gypse (Badosa et al 2015)

Est-ce que les concentrations dans la nature des polluants, la cinétique d'imbibition et de séchage permettent la précipitation du gypse?

Modélisation THM-C

Usually derived from a rigourous thermodynamic framework:

- state functions
- state variables
- thermodynamic principles

Principal hypothese

H-M-T-C additif potentials

H-M-T-C additif potentials

-Chemical potential and chemical activity

$$\mu_{i} = \mu_{i}^{o} + RT \ln a_{i}$$
Perfect gas
$$p_{i} = x_{i} p_{G}$$
Phase gas
$$d \mu_{i} = RT d \ln f_{i}$$
Fugacity
$$a_{i} = x_{i} = \frac{p_{i}}{p^{o}}$$
- Chemical reaction
$$v_{i}A_{i} \leftrightarrow v_{j}A_{j}$$

$$IAP = \frac{\Pi[A_{i}]^{v_{j}}}{\Pi[A_{i}]^{v_{i}}}$$

- Cinetique of reaction
- Enthalpie variation

Transport of a given solute varity

$$\underline{j}_{e} = \lambda_{lq}^{H} \left(-\underline{grad}(p_{lq} + p_{s}) + \rho_{lq} \underline{\mathbf{F}}^{m} \right) \qquad \text{advection}$$
$$\underline{j}_{\alpha} = -D_{\alpha} \underline{grad}(\phi S_{lq} C_{\alpha}) \qquad \qquad \text{diffusion}$$

 $\underline{j}_{d\alpha} = -\underline{\underline{D}} \cdot \underline{grad} \left(\phi S_{lq} C_{\alpha} \right)$

dispersion

Mass conservation

$$\frac{\partial}{\partial t} \left(\phi S_{lq} C_{\alpha} \right) + div \left(\underline{j}_{e} + \underline{j}_{\alpha} + \underline{j}_{d\alpha} \right) = 0$$

(sum over all varieties)

Proposal for a sequential solving schema

Hypothesis :

Weak M->C coupling (but strong C->M coupling)

$$\underline{d\varepsilon} = \underline{d\varepsilon}^{m} + \underline{d\varepsilon}^{h} + \underline{d\varepsilon}^{th} + \underline{d\varepsilon}^{ch} = \underline{d\varepsilon}^{THM} + \underline{d\varepsilon}^{ch}$$
$$\underline{d\sigma} = \underline{\underline{C}} : (\underline{d\varepsilon} - \underline{d\varepsilon}^{p}) - b \cdot \underline{\underline{\delta}} dp - 3\alpha_{t} dT \cdot K \underline{\underline{\delta}}$$

$$\underline{d\sigma} = \underline{\underline{C}}(c_i) : (\underline{d\varepsilon} - \underline{d\varepsilon}^p - \underline{d\varepsilon}^{ch}) - b(c_i) \cdot \underline{\underline{\delta}}dp - 3\alpha_t(c_i) dT \cdot K \underline{\underline{\delta}}dp$$

 C_i Effective concentration

On the effective concentration definition

$$c^{*} = \frac{c^{\text{int}} - c^{ext}}{c^{\text{int}} - c_{ep}} \qquad ESP = \frac{[Na^{+}]}{CEC} \qquad L_{c} = \frac{[Ca_{L}^{++}]}{[Ca_{0}^{++}]}$$

$$D = \left(1 - \frac{V_{mgt}}{V_{i_s}}\right) + \frac{\sum V_{mgs}}{V_{i_s}}$$

 $\partial \Omega$

2-INVESTIGATION : Contrainte THM-C

Numerical schema

problem THM-C Mesh and step time Sequential resolving THM-C

- GIMRT

General Implicit Multi Resolution Time)

OS3D

Operator Splitting Diffusion Dispersion Dumping (weak Courant number)

Initial state, materials properties, boundary conditions

Laboratoire	de Mécanique	chimique de			DLYTECH° LÉANS	
Composition minéra de bentonite MX-80	ålogique d'un lii 0 sec [GAU 04]	tre	Validation de l'approche :			
Minéral	MX-80		satura	uon de l'argile g	Unitalite	
	Masse (g)	mol/l	Water composition in equilibre with MX-80 [GAU 04]			
Cristobalite	157.1541	2.6192				
Gypsum	9.4292	0.0548				
Na-Montmorillonite	1178.6560	3.2151				
Calcite	22.0016	0.2200				
Pyrite	0.0025	2.095E-5	Element	Fau de pores de bentonite	Unité	
Autre	204.2979	-	nH	7 39	Onice	
Somme	1571.5414	0.0000	Eh	-192	mV	
CEC cmol	81 meq/100g	1.27251	Na	3.21E-01	mol/kg eau	
n=43%	-		K	3.31E-03	mol/kg eau	
k=2.4 10 ⁻⁹ m/s			Mg	5.35E-03	mol/kg eau	
			Ca	1.40E-02	mol/kg eau	
			Al	8.26E-10	mol/kg eau	
L Clin - 1'			Si	3.43E-04	mol/kg eau	
Infiltration by NaOH soluiton			S	1.48E-01	mol/kg eau	
		CFM	IR, 8 Octobre	2020 6.46E-02	mol/kg eau	

Validation de l'approche : saturation de l'argile gonflante

Gonflement pendant la saturation à l'eau

Peut il y avoir une précipitation de gypse dans les conditions naturelles et en présence des polluants ?

What about impact of pollution ?

Laboratoire de Mécanique

Gabriel Lamé

≻pH decreases with the time

> Increase of Ca²⁺ and SO₄²⁻ concentration

> But not gypse precipitation!! CFMR, 8 Octobre 2020

Partial gas pressure [SUR 00]

Second hypothese : Acid rain pollution AND air pollution

Acid rain composition [PAR 99]

Variation en cycle pluie-séchage CFMR, 8 Octobre 2020

Hydric state variation

At 2 mm from the surface

- Water saturation varies between 0.008 and 0.94
- > No gypse precipitations !!!

Conclusions

1-Les mécanismes de dégradation des pierres de construction sont multiples. La fatigue THM semble un mécanismes plausible

 2- Si la présence de gypse dans les fractures crées par la desquamation en plaque est avérée, son origine et son impact reste à être établié.
 L'origine aérienne du SO2 semble peu probable