"Avancées en mécanique des roches expérimentales " Paris 10 juin 2010

Etude Expérimentale de la signature géophysique des basaltes

Jérôme Fortin¹, M. Adelinet¹, Y. Guéguen¹, S. Stanchits², S. Vinciguerra³

- 1 Laboratoire de Géologie, Ecole normale supérieure, Paris France
- 2 GeoForschungsZentrum Potsdam
- 3 INGV Rome

\rightarrow Peut-on contraindre l'interprétation des cartes de tomographie de vitesses avec des mesures de laboratoire?

Observation d'anomalies en profondeur

Geoffroy et Dorbath, GRL, 2008

I- Etude des relations entre vitesse des ondes et perméabilité pendant la déformation d'un basalt (basalte de l'Etna)

- 1.1 Chargement hydrostatique
- 1.2 Chargement déviatorique

II- Etude de la dispersion liée au changement d'échelle de fréquence (modules élastiques basses et hautes fréquences) (basalte Islandais)

2.1 Nouvelle approche expérimentale

2.2 Mise en évidence du squirt-flow

I-Roche étudiée : le basalte

→Basalte

Texture microlithique (pyroxène, olivine and feldspath)

Porosité variable suivant les conditions de formation

Basalte de l'Etna étudié

Porosité totale 2 % Essentiellement une porosité (~1%) de fissures (liée au choc thermique pendant le refroidissement de la lave) + ~1 % de porosité de bulles

Basalte Islandais étudié

Porosité connectée totale 8 % caractérisée par une double porosité

- porosité de fissures 1 %
- porosité de pore ronds 7 %

Partie I- Etude des relations entre vitesse des ondes et perméabilité pendant la déformation d'un basalte (basalte de l'Etna)

II- Dispositif expérimental

\rightarrow Presse triaxiale

 \rightarrow Mesure des vitesses des ondes élastiques

Vitesse des ondes élastiques : → capteurs piézo-électriques (1 MHz) -mesure de Vp axial -mesure de Vp radial -mesure de Vs (Sh) -mesure de Vs (Sv)

II- Dispositif expérimental

→ Mesure de la perméabilité

Fluide utilisé : eau - pression de pore = 10 MPa

Méthodes utilisées dans cette étude

- Débit constant (Loi de Darcy)
- Méthode du pulse (Brace et al. 68)
- Mesure continue pendant le chargement par application d'un petit différentiel de pression de pore (Loi de Darcy, régime permanent ?)

III- Résultat – chargement hydrostatique

\rightarrow Contrainte déformation & Evolution des vitesses

III- Résultat – chargement hydrostatique

→ Evolution de la perméabilité

Basalte l'Etna – porosité 2%

Fortin et al. 2010 soumis

III- Chargement hydrostatique : Interprétation

→ Interprétation des vitesses en terme d'évolution de la densité de fissures

Pour une symétrie isotrope : Rappel des définitions de la vitesse des ondes P et des ondes S

$$V_p = \sqrt{\frac{K + 4/3G}{\gamma}} \qquad V_s = \sqrt{\frac{G}{\gamma}}$$

K: module élastique d'incompressibilitéG: module de cisaillementγ: masse volumique

Modèle de milieu effectif pour un milieu fissuré (Kachanov 1994):

-On définit la densité de fissures :

$$\rho = \frac{1}{V} \sum^{N} c_i^3$$

- On définit le facteur de forme : $\zeta = W/C$

Hypothèse : - distribution de fissures aléatoirement orientées - hypothèse de non interaction

- Ecriture des modules effectifs (K et G) en fonction de ρ (cas sec) et de ρ et ζ pour le cas saturée

Exemple cas sec : $\frac{K_o}{K} = 1 + \rho \frac{h}{1 - 2\nu_0} \left(1 - \frac{\nu_o}{2} \right)$

(h paramètre lié à la géométrie de la fissure h~1.8)

III- Chargement hydrostatique : Interprétation

 \rightarrow Interprétation des vitesses en terme d'évolution de la densité de fissures

III- Chargement hydrostatique : Interprétation

→ Corrélation densité de fissures obtenue par la vitesse des ondes élastiques et perméabilité

Modèle de physique statistique pour estimer la

perméabilité d'un milieu fissuré (Guéguen et Dienes 89): $k = \frac{2}{15} w \xi \rho$ Ouverture moyenne des fissures w 0,4 0,35 Mean crack aperture, µm 0,3 0,25 0,2 0,15 0,1 0,05 **EB13** 50 100 150 200 Effective pressure, MPa *Remarque:* $c = w / \xi \approx 0.3 \mu m / 5.10^{-3} \approx 0.7 mm$ taille des grains : 0.6-1.6 mm

IV- Résultat – chargement déviatorique (Pc=20 MPa)

→ Contrainte déformation & Evolution de la porosité

IV- Résultat – chargement déviatorique (Pc=20 MPa)

\rightarrow Evolution des vitesses

IV- Résultat – chargement déviatorique (Pc=20 MPa)

\rightarrow Microstructure

Echantillon saturé

IV- Chargement déviatorique : Interprétation

→ Interprétation des vitesses en terme d'évolution de la densité de fissures

Symétrie transverse isotrope :

5 vitesses indépendantes pour déterminer le tenseur d'élasticité \underline{C} qui est calculé toutes les 30 secondes pendant le chargement (d'où $\underline{S} = \underline{C}^{-1}$)

Modèle de milieu effectif pour un milieu fissuré en symétrie transverse isotrope:

Choix des paramètres microstructuraux :

- 2 populations de fissures : - une population de fissures aléatoirement orientées : densité ρ_i - une population de fissures verticales : densité ρ_v

- Hypothèse de non interaction

-Ecriture des modules de souplesse S_{ij} effectifs théoriques en fonction de ρ_i et ρ_v (cas sec) et de ρ_i , $\rho_v \zeta_i$ et ζ_v pour le cas saturée

(obtenus à partir des expressions générales de Kachanov 94)

Minimisation entre modules de souplesse mesurés et modules de souplesse effectifs théoriques, pour obtenir les densités de fissures ρ_i et ρ_v

IV- Chargement hydrostatique : Interprétation

 \rightarrow Interprétation des vitesses en terme d'évolution de la densité de fissures

IV- Chargement déviatorique : perméabilité

→ Evolution de la perméabilité

Basalte l'Etna – porosité 2%

Fortin et al. 2010 soumis

Partie I- Conclusions

-L'utilisation des vitesses est un outil complémentaire qui permet de mieux comprendre l'évolution de la microstructure de la roche avec le chargement

 \rightarrow Sous chargement hydrostatique :

- la fissuration pré-existante contrôle les propriétés physiques (perméabilité et vitesse des ondes)

- cohérence entre les mesures de vitesses des ondes élastiques et de perméabilité

→Sous chargement déviatorique :

- Compétition entre fissures pré-existantes et fissures induites par le chargement axial sur les propriétés physiques

- Remarque : l'approche en densités de fissures n'est plus valable dès lors qu'il y a localisation de la déformation ...

Partie II- Etude de la dispersion liée au changement d'échelle de fréquence (modules élastiques basses et hautes fréquences) (basalte Islandais)

I- Le problème du changement d'échelle fréquentielle

Du terrain au laboratoire : un changement d'échelle spatiale et un changement d'échelle fréquentielle

Au laboratoire il est possible de mesurer les vitesses des ondes - sous contrainte -et/ou pour différentes natures de fluides (conditions in situ)

Mais les fréquences utilisées sont différentes ...

Roche saturée

Etat basse fréquence

-pression de fluide isobare -pas de gradient de fluide entre inclusions -cadre de la poroélasticité

Etat haute fréquence

la pression de fluide dans une inclusion dépend de sa géométrie
Déplacement de fluide entre des zones plus compressibles vers des zones moins compressibles

Roche sèche : pas d'effet de fréquence

I- Vitesse des ondes et fréquences

-Beaucoup d'études théoriques sur l'effet de fréquence

- Mais très peu de données expérimentales Batzle et han 2006, Adam et Batzle 2008

→ Roche étudiée : basalte Islandais

Porosité connectée totale 8 % caractérisée par une **double porosité**

-porosité de fissures 1 %-porosité de pore ronds 7 %

→ Protocole expérimental pour mesurer des modules haute fréquence et basse fréquence

 $V_p = \sqrt{\frac{K + 4/3G}{\rho}}$ $V_s = \sqrt{\frac{G}{\rho}}$ \square D'où évolution de K^{HF} avec la pression de confinement

→ Protocole expérimental pour mesurer des modules haute fréquence et basse fréquence

 \longrightarrow D'où évolution de K^{BF} avec la pression de confinement

→ Protocole expérimental pour mesurer des modules haute fréquence et basse fréquence

2 cycles : air puis eau confining P confining P (0 -> 200 MPa) (0 -> 200 MPa) Second cycle **First cycle** WATER AIR (N2) Pore P Pore P (10 MPa) (10 MPa)

 \square D'où évolution de K_{sec} et K_{sat} avec la pression de confinement

A – Données mécanique : Evolution de la porosité – Evolution des vitesses Mise en évidence de la fermeture de la porosité de fissures (1%)

C – Données haute et basse fréquence

Basalte Islandais – porosité 8%

Sec

C – Données haute et basse fréquence

Basalte Islandais – porosité 8%

D – Mise en évidence de l'effet de fréquence

Partie II- Conclusions

- Mise en place d'une nouvelle technique expérimentale permettant de travailler à des fréquences rarement étudiées au laboratoire

- Mise en évidence expérimental d'un effet de fréquence quand les fissures sont ouvertes

→ Expliqué par un écoulement entre fissures et pores (cet effet est présent, car la porosité du basalte Islandais est bi-modale).

→ En accord avec un modèle théorique de milieu effectif simple (Adelinet et al . Soumis)

Remarque : Dans cette étude nous nous sommes uniquement intéressés au module d'incompressibilité. Quid du module de cisaillement G ou du module d'Young E ?

Perspectives :

-Développement d'un dispositif pour mesurer E sous pression, sur une plage de fréquence 0-100khz