Journée sur les « Discontinuités et joints dans les massifs rocheux » organisée par le LCPC (jeudi 24 mai 2007)

Caractérisation hydromécanique des fractures in-situ Apport de la modélisation numérique

A. Thoraval

INE-RIS

Mise au point d'une sonde permettant d'améliorer la qualité des mesures in situ

Mesures classiques (réalisées initialement sur site)

- \checkmark extensomètres à corde vibrante (précision : 1 μ m/m)
- \checkmark capteurs de pression interstitielle (précision : 1 kPa)
- ✓ fréquence d'acquisition: 2 mesures/mn (1/30 Hz)

Mise au point d'une sonde amovible basée sur la technologie des fibres optiques (HPPP)

 ✓ mesures de déplacement plus précises : 0,1 µm/m

- ✓ capteurs plus petits
- ✓ grande rapidité de réponse : 120 Hz

 ✓ mesures non affectées par le champ magnétique

 ✓ Perspectives de développement et de compactage de la sonde prévues par GEOSCIENCE-AZUR

INERIS

JURASSIQUE

Réalisation de mesures sur le site expérimental de Coaraze

Caractéristiques du site

NANCY

COARAZE (site pilote)

✓ Bloc calcaire stratifié découpé par des failles drainantes

✓ Présence d'une source sur laquelle a été installée une vanne (débit moyen annuel de 10 l/s)

 ✓ Conditions géométriques, hydrauliques et mécaniques bien connues aux limites de la zone étudiée

D. San

CRETACE

INE-RIS

Reconnaissance de la fracturation du site

3 familles principales de discontinuités d'orientation moyenne :

(S) joints de stratification : azimut N40, pendage 45 SE
(D) failles : azimut N120 à N140, pendage 75 à 90 NE
(R) failles : azimut N50 à N90, pendage 70 à 80 NW

Visualisation sur photo des traces des fractures principales du site de Coaraze

NERIS

Mesure précise de la position et de l'orientation des fractures par levés tachéométriques

 ✓ <u>Mesure</u> des coordonnées X, Y et Z de points positionnés sur les traces visibles des fractures sur le versant

 ✓ <u>Traitement</u> des mesures pour déterminer l'orientation et la position des différentes fractures

✓ <u>Détection des sources d'imprécision</u> points colinéaires, fracture non plane Visualisation des points mesurés

• 06/07/2007 • 6/25

Caractérisation hydromécanique du site expérimental

Démarche :

- ✓ Réalisation d'expérimentation *in situ* (2 types de sollicitation hydraulique)
- ✓ Mesures de la réponse hydromécanique (à l'aide de différents dispositifs de mesures)
- ✓ Interprétation des expérimentations à l'aide de modèles analytiques et numériques

Sollicitation globale

Remontée de la nappe par fermeture de la vanne

- ✓ <u>Zone d'intérêt</u> : toutes les fractures
- ✓ Présence d'une zone initialement non-saturée

Sollicitation locale Pression ou débit imposé en un point d'une fracture

 ✓ <u>Zone d'intérêt</u> : zone limitée autour de la fracture instrumentée

 ✓ Condition saturée à proximité de la zone sollicitée

Sollicitation globale remontée de la nappe par fermeture de la vanne

Sollicitation globale INE-RIS

Instrumentations mise en place [Guglielmi, 1999]

✓ Extensomètres à corde vibrante (GLOZL®.) : 1 μm/m

- ✓ Capteurs de pression interstitielle : 1 kPa
- ✓ Inclinomètres de type IPG (conçu par P.A. Blum) et fabriqués par TELEMAC®. :10⁻⁶ rad (en dépl. : 0,1 μ m)

✓ Station d'acquisition (CAMPBELL®) : freq. =1/30Hz

Sollicitation globale INERIS

Mesure de la réponse du site à la sollicitation globale

 ΔP , $\Delta u_n = f(temps)$

Dans les fractures conductrices :

corrélation entre ΔP et Δu_n

Dans les joints de stratification :

pas de corrélation claire entre ΔP et Δu_n

Sollicitation locale Pression ou débit imposé en un point d'une fracture

Sollicitations locales **INE-RIS**

=> différentes sollicitations ont été imposées en HM1 ou en HM2 de nature et de durée différentes (injection ou pompage ; longue ou courte durée)

Réalisation d'un modèle géométrique 3D du site

✓ Utilisation du <u>code RESOBLOK</u>

✓ <u>Modèle à grande échelle</u> du site de Coaraze (cube d'environ 40 m de côté)

✓ Validation du modèle géométrique

 $D^{1}6$

D15 R30

R 34

D13

R35

D17

D14 D12

D11

D12

R8

Coupe du modèle RESOBLOK parallèle à l'orientation moyenne du versant Nord-Est du vallon

INERIS

R4

Interprétation des mesures par modélisation (3DEC)

Hypothèses du modèle de référence :

- géométrie : réseau de fractures planes
- comportement matrice : élastique, imperméable
- comportement fracture : élastique :
 k_n = 15 GPa/m (= valeur labo pour 0,1 MPa)
- loi d'écoulement : loi cubique

•
$$a = a_0 + \Delta u_n$$
: $a_0 = 10^{-4} \text{ m}$; 10^{-5} m (à ajuster)
• $\Delta \sigma'_n = \Delta \sigma_n - \Delta P$

Etat initial et conditions aux limites : estimé par un calcul préalable à grande échelle : σ 'n (HM1) = 120 - 45 = 75 kPa

<u>Sollicitations imposées</u> : Chroniques de la surpression imposée au point HM1 => simulations en régime transitoire

Sollicitation locale

de courte durée

INE-RIS

Sollicitations INERIS

Sollicitation locale de <u>longue</u> durée (paliers d'injection et de pompage)

Injection (pression constante) ou pompage (débit constant) au niveau de l'intersection de la fracture R4 avec un forage

HM₂

1,1 m

HM1

Faille R4 très

nerméabl

Essais d'injection à pression constante (palier de 30 mn)

Sollicitations locales par paliers

INERIS

Interprétation des mesures par modèle analytique

<u>Synthèse des mesures</u> : Q, ΔP , Δu_n

Hypothèse modèle analytique :

✓ Effet mécanique négligeable

 ✓ Ecoulement laminaire, radial entre deux plans parallèles distants de «a» (ouverture hydraulique)

> Q / $\Delta h = C a^3$ avec C = 2 π (pg/12 μ) / ln(r^e/r^w),

 r^w : rayon du forage (0,035 m) r^e : distance entre HM1 et HM2 (1,1 m)

 Δh : variation de charge entre HM1 et HM2

Interprétation des mesures par modélisation (3DEC)

Hypothèses du modèle de référence :

- géométrie : réseau de fractures planes
- comportement matrice : élastique, imperméable

- comportement fracture : élastique :
 k_n = 15 GPa/m (= valeur labo pour 0,1 MPa)
- loi d'écoulement : loi cubique
- $a = a_0 + \Delta u_n$: $a_0 = 10^{-3} \text{ m}$; 10^{-4} m (à ajuster) • $\Delta \sigma'_n = \Delta \sigma_n - \Delta P$

Etat hydraulique initial : milieu saturé ; P= 45 kPa en HM1 et 33 kPa en HM2

Etat mécanique initial : estimé par un calcul préalable à grande échelle : σ'_n (HM1) = 120 – 45 = 75 kPa

<u>Conditions aux limites</u> : « flux nul » en hydraulique et «contraintes imposées » en mécanique Sollicitations imposées : Succession de valeurs de pression (essais d'injection) ou de débit (essais de pompage) imposées au point d'intersection du sondage HM1 avec la fracture R4 => succession de calculs en régime permanent

Sollicitations

locales par paliers

INERIS

Sollicitations

INERIS

Interprétation des mesures par modélisation (3DEC)

Valeur de l'ouverture hydraulique : $\checkmark a = 0,6 \text{ mm} (0,5 \text{ mm} < a < 1,3 \text{ mm})$

Valeur de la raideur normale :

 \checkmark k_n = 5 GPa/ m

Synthèse

- ✓ Expérimentation n°1 : sollicitation globale par fermeture de la vanne
 - mesures : extensomètre à corde vibrante, manomètre
 - <u>interprétation</u> (modèle 2D non-saturé) : validité de la relation de Terzaghi « $\Delta \sigma'_n = \Delta \sigma_n - \Delta P$ » pour les fractures (a = 0,5 mm ; k_n = 7 GPa/m) ; nécessité de la reformuler pour expliquer les mesures faites sur les joints de stratification

INE-RIS

- ✓ Expérimentation n°2 : sollicitation locale de courte durée (pulse-test)
 - mesures : sonde amovible avec capteurs à fibre optique
 - interprétation (modèle 3D saturé, régime transitoire) :

Calage sur Un=f(P) : $a = 0,1 \text{ mm}, k_n = 15 \text{ GPa/m}$ en HM1 (\neq en HM2, hétérogénéité) Calage sur P=f(t) et Un=f(t) : loi cubique => a = 0,08 mm

✓ Expérimentation n°3 : sollicitation locale de longue durée par palier

- mesures : sonde amovible avec capteurs à fibre optique
- <u>interprétation</u> (modèle analytique) : 0,5 mm < a < 1,3 mm
- <u>interprétation</u> (modèle 3D saturé, régime permanent) : a = 0.6 mm ; $k_n = 3 \text{ GPa/m}$
- ✓ A partir d'essais de laboratoire (pour σ_n =0,5 MPa) : a = 0,06 mm ; k_n= 15 GPa/m