

Modélisation des discontinuités par des Éléments Joints dans les codes aux Éléments Finis

Ahmad POUYA

Journée sur les Discontinuités et Joints dans les Massifs Rocheux

24 mai 2007

Méthodes numériques de modélisation des fractures dans les roches et les massifs rocheux

- O Éléments Distincts (Cundall 1980)
- Éléments Finis (Élément Joint de Goodman 1968)
- O Éléments de Frontière

O Analyse en Déformations Discontinues (Shi et Goodman 1985)

Éléments Joints dans les codes aux Éléments Finis :

- Anthyc (École Polytechnique)
- CESAR (LCPC)

Création du maillage aux Éléments Finis tenant compte de la géométrie des fractures

Création des Éléments Joints

Traitement des intersection de fractures

Ajustements et filtres numériques

Modèle de joint élastoplastique parfait

Critère de Mohr-Coulomb et potentiel plastique :

Critère:
$$f(\boldsymbol{\sigma}) = |\tau| + \sigma_{n} tg \varphi - c$$

Potentiel:
$$g(\boldsymbol{\sigma}) = |\tau| + \sigma_{n} t g \psi$$

Différentes configurations de fracturation d'un massif rocheux

Fractures sub-parallèles

Fractures découpant des blocs

Milieux fissurés

Applications

Résultats de simulation pour le granite de la Vienne (Stockage de déchets radioactifs, ANDRA)

Cisaillement //xy

12

Uy

Х

Classification des massifs rocheux

Bieniawski, Barton, ...

Thèse de Michel Chalhoub (2006)

Apports des méthodes d'homogénéisation numérique à la classification des massifs rocheux

LCPC, Centre de Géosciences ENSMP

Abaques ou formules approchées donnant le module équivalent du massif dans différentes directions en fonction de la densité, l'extension et la nature des fractures

Homogénéisation numérique du comportement des roches fissurées

Argilites, bétons, ...

Module homogénéisé des milieux fissurés en élasticité linéaire

Solution Analytique (Kachanov) :

$$\varepsilon_{ij} = \frac{1+\nu}{E} \sigma_{ij} - \frac{\nu}{E} (tr\sigma) \delta_{ij} + \frac{\pi}{E} (\alpha_{ik} \sigma_{kj} + \sigma_{ik} \alpha_{kj})$$
$$\alpha_{ij} = \frac{1}{A} \sum l^{(k)2} n_i^{(k)} n_j^{(k)}$$

$$\mathcal{E} = \begin{bmatrix} 0.002310 & 0 \\ 0 & 0.6E - 03 \end{bmatrix}$$

Résultat numérique:

Homogénéisation des structures en maçonnerie

Structures régulières : possibilité de méthodes théoriques

Structures irrégulières : nécessité de méthodes numériques

Stabilité des talus rocheux

Modélisation d'un système de blocs

Modélisation des contraintes et déplacements dans le massif

l'angle de frottement

Rochers de Valabres

Projet STABROCK

INERIS (Pilote), LAEGO, LCPC/ERA Toulouse, L3S, Géoscience-Azure, Société SITES (PME), Univ. Besançon

Stabilité des talus rocheux

Cas plus général : fractures pouvant s'arrêter dans le massif

Développements en cours

Thèse P. Bémani, LCPC

Modèle de Jing et al. (1993) :

- Comportement pré et post pic
- Évolution des raideurs normal et tangent

$$k_{n} = \frac{k_{n}^{0}}{\left(1 - u_{n}/u_{n}^{m}\right)^{2}} \qquad \begin{cases} k_{t} = \frac{\sigma_{n}}{\sigma_{c}} \left(2 - \frac{\sigma_{n}}{\sigma_{c}}\right) k_{t}^{m} & (0 \ge \sigma_{n} \ge \sigma_{c}) \\ k_{t} = 0 & (\sigma_{n} > 0) \end{cases}$$

Les paramètres du modèle :

$$k_t^m$$
, k_n^0 , σ_c , u_n^m , C, φ_r , φ_b , α_0 , u_t^0 , u_t^p , u_t^r , D_m , s_c

Modélisation de l'arrachement dans un system des fractures

Ouverture des fractures dans des falaises rocheuses sous l'effet de gel-dégel

Glissement

Modèle de joint à endommagement normal

$$\sigma_{n} = k_{n}(D)U_{n} \qquad k_{n} = k_{n0}(1-D)$$

$$D = \begin{cases} 0 \qquad \text{si} \qquad U_{n} \leq U_{R} \qquad (\text{ou } \sigma_{n} \leq \sigma_{R}) \\ 1-e^{-\alpha(U_{n}/U_{R}-1)} \qquad \text{si} \qquad U_{n} > U_{R} \qquad (\text{ou } \sigma_{n} > \sigma_{R}) \end{cases}$$

$$Critère d'endommagement :$$

$$F(\sigma_{n}, D, \alpha), \qquad \sigma_{n} \leq \sigma_{R} , \qquad 0 \leq D < 1, \qquad \alpha > 1$$

$$D = 0 , F = 0 \implies \sigma_{n} = \sigma_{R} \\ 2) \ D \rightarrow I, F = 0 \implies \sigma_{n} \rightarrow 0$$
Paramètres du modèle :

$$k_{n0} , k_{i0} , \sigma_{R} , \alpha$$

0,1 0,2 0,3 0,4 0,5 0,6

Déplacement (m)

0

0,7 0,8

0,9

1

Progression d'une fracture sous l'effet de cycles de gel-dégel

Thèse M. Bost, LCPC

(1) (2) (3) Avancement de l'extrémité de la de fissure

Développement des fissures dans des structures en maçonnerie

Prise en compte de la pression de fluide dans le joint

Perspectives

Couplage avec les phénomènes d'écoulement Fluides agressifs (dissolution-recristallisation)

Conclusion

Les Éléments Joints implantés dans un code aux Éléments Finis permettent de modéliser aisément différents phénomènes hydromécaniques dans les massifs rocheux et les roches fissurées.

