

EXPERTS

High-resolution characterization of the induced fracture network around galleries in the Callovo-Oxfordian Clay

using

4-D numerical borehole analysis and pneumatic tomography approaches

<u>Ralf Brauchler</u>¹, Rémi de la Vaissière², Médéric Piedevache³, Sacha Reinhardt¹

 ¹ AF Consult Switzerland Ltd, Täfernstrasse 26, CH-5405 Baden, Switzerland
² Andra CMHM, RD960, F-55290 Bure, France
³ Solexperts SA, Technopôle Nancy-Brabois10, allée de la forêt de la Reine 54500 Vandoeuvre les Nancy

ANDRA French national radioactive wast

Spatially high rsolution hydraulic testing: Concepts (I)

Hydraulic single-well tests

Hydraulic Tomography

Hydraulic cross-well tests

Spatially high rsolution hydraulic testing: Concepts (II)

Hydraulic single-well tests

Hydraulic cross-well tests

Hydraulic Tomography

Advantages of Hydraulic Tomography:

- Direct measurement
- Proof of hydraulic fracture connectivity
- Spatially high resolution parameter estimates

Spatially high resolution hydraulic testing: equipment

Multi-packer system

Interval and Packer

Control unit

Multisim

inhouse borehole simulator

onagement agency

Hydraulic/pneumatic tomography:

- A useful tool for characterizing the EDZ (evolution)?

The Meuse /Haute Marne Underground Research Laboratory

de la Vaissière et al., 2015, J. Hydrol

Experimental set-up

CDZ-Experiment (Compression of the Damage Zone)

6 boreholes with multi-packers (3 under the plate the others outside)

3 boreholes for seismic tomography

Evolution of the damage zone under loading

Cross-holes interferences results

 Number of interferences decreases during the loading

de la Vaissière et al., 2015, J. Hydrol

Seismic tomography results

 the velocities increase by several hundreds of m/s below the loading area

Data processing (I)

- 1. Wavelet denoising $s(k) = f(k) + \varepsilon^* e(k)$
 - *f*(*k*) *de-noised signal*
 - ε wavelet coefficient
 - e(k) noise

2. Polynomial regression

3. Derivative of the polynomial

Inversion results 2-D

Prior to loading, based on 28 interference signals

Zone 1:

- sub-vertical tensile fractures
- located between 0.6m and 1m away from the drift wall

Zone 2:

- "impregnated" shear fractures
- located between 1m and 1.5m away from the drift wall

Zone 3:

- "non-impregnated" shear fractures
- located more than 2m away from the drift wall

Comparison of seismic and diffusivity tomograms

(ANDRA French notional radioactive waste management agency

Qualitative interpretation

ANDRA Exerct national radioactive wa

magement agency

Inversion results 2-D

After loading cycle 1 of 2 MPa based on 27 interference signals

Zone 1:

- sub-vertical tensile fractures
- located between 0.6m and 1m away from the drift wall

Zone 2:

- "impregnated" shear fractures
- located between 1m and 1.5m away from the drift wall

Zone 3:

- "non-impregnated" shear fractures
- located more than 2m away from the drift wall

Inversion results 2-D

Comparison with single borehole gas tests

	Hydraulic tomography	Permeability [m ²]
	Minimum value	2.6E-16
	Maximum value	2.6E-14
P MULTISIM		

2-D Relationship Tomogram

Comparison of the tomograms prior to loading and after loading step 1

ANDRA

Inversion results 3-D

Prior to loading and after loading of 2 MPa

48 interference signals

3-D Relationship Tomogram

Comparison of the tomograms prior to loading and after loading step 1

3-D Relationship Tomogram

Comparison of the tomograms with the vertical induced stress beneath a circular loaded area, Boussinesq solution

Figure 10.10, page 330 in Coduto [1999]

Summary

CANDRA French national radioactive waste monagement agenty

Hydraulic/pneumatic tomography: A useful tool for characterizing the EDZ (evolution)? YES

- reconstruction of hydraulic changes orthogonal and parallel to the drift wall with a high spatial resolution
- the reconstructed diffusivity values are in accordance with numerical singleborehole analysis performed with the borehole simulator Multisim
- the obtained diffusivity tomograms depicts three different zones of the excavation-induced fracture network, which are in accordance with the conceptual model
- Relationship tomograms show a similar pattern as the vertical induced stress beneath a circular loaded area (Boussinesq solution)
- Strong positive correlation between the reconstructed diffusivity distribution and p-wave velocity

Outlook

ANDRA French national radioactive waste

350 325 300 Diffusivity (m²/s) 275 250 225 CUBIC FIT $= 294.08 + 6.2737 \cdot X - 20.351 \cdot X^{2} + 5.1335 \cdot X$ 200 L 0,5 1 1,5 2 2,5 3 Velocity (km/s) SECTION - A W1 i W2 HYDRAULIC TOMOGRAPHY 0 -2 Z (m) SECTION - B W2 -4 W1 -8 **SECTION - B** -10+5 10 15 20 25 30 35 40 45 50 55 Y axis (m) 0 -2 -4 -6 -8 -10 55 70 Diffusivity (m²/s) **SECTION - A** 200. 250. 225. 275. 300. 56 **SECTION - B** 42 (45 28 Z (m) 35 Y 25 14 X (m) -8 **SECTION - A** 15

-10

0

20

30

40

60

70

X axis (m)

50

10

Site specific relationship: p-wave velocity - diffusivity

Böhm et al., 2013, Near Surface Geophysics

50

Outlook (II)

Discrete fracture inversion - Theory

- The inversion procedure is initiated by randomly generating a DFN realization based on the following a priori information:
 - The results of the travel time based inversion, derivation of potential positions of fractures and appraisal of the hydraulic properties
 - Statistical information: e.g. fracture length distribution, minimum fracture length, fracture orientation
- The transdimensional reversible jump Markov Chain Monte Carlo (rjMCMC) is a unique variant of MCMC, in which the number of parameters can vary among subsequent iterations during the inversion process

Somogyvári et al., 2017 WRR

Outlook (III)

Transdimensional reversible jump Markov Chain Monte Carlo (rjMCMC) inversion

Somogyvári et al., 2017 WRR

Outlook (IV)

Discrete fracture inversion – pressure data

Ringel et al., 2019, Geoscieneces

Outlook (V)

Discrete fracture inversion – Tracer data

Somogyvári et al., 2017 WRR

Pr Own selected references related to hydraulic tomography

JIMÉNEZ, S., MARIETHOZ, G., **BRAUCHLER, R**., BAYER, P. (2016) Smart pilot points using reversible-jump Markov-chain Monte Carlo, Water Resour. Res

SOMOGYVÁRI, M., BAYER, P., **BRAUCHLER, R** (2016) Travel time based thermal tracer tomography, Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-20-1-2016

HU, L., BAYER, P., ALT-EPPING, P., TATOMIR, A., SAUTER, M., **BRAUCHLER, R** (2015) Time-lapse pressure tomography for characterizing CO2 plume evolution in a deep saline aquifer, International Journal of Greenhouse Gas Control, 39, 91-106

JIMÉNEZ, S., **BRAUCHLER, R**., HU, R., HU, L., SCHMIDT, S., PTAK, T., BAYER, P. (2015) Prediction of solute transport in the subsurface utilizing hydraulic tomography, Water Resour. Res., doi:10.1016/j.advwatres.2013.10.002

JIMÉNEZ, S., **BRAUCHLER, R**., BAYER, P. (2013) A new sequential procedure for hydraulic tomographic inversion, Advances in Water Resources, doi:10.1016/j.advwatres.2013.10.002

BRAUCHLER, R., BÖHM, G., LEVEN, C., DIETRICH, P., SAUTER, M. (2013) A laboratory study of tracer tomography, Hydrogeology Journal, 21(6), 1265-1274, doi:10.1007/s10040-013-1006-z

BÖHM, G., **BRAUCHLER, R**., NIETO, D.Y., BARADELLO, L., AFFATATO, A., SAUTER, M. (2013) A field assessment of site-specific correlations between hydraulic and geophysical parameters, Near Surface Geophysics, doi:10.3997/1873-0604.2013034

BRAUCHLER, R., HU, R., HU, L., JIMÉNEZ, S., BAYER, P., PTAK, T. (2013) Rapid field application of hydraulic tomography for resolving aquifer heterogeneity in unconsolidated sediments, Water Resour. Res., Vol. 49, 1-12, doi:10.1002/wrcr.20181

LOCHBÜHLER, T., DOETSCH, J., **BRAUCHLER, R**, LINDE, N. (2013) Structure-coupled joint inversion of geophysical and hydrological data, Geophysics, Vol. 78(3), ID1–ID14, doi: 10.1190/geo2012-0460.1

BRAUCHLER, R., DOETSCH, J., DIETRICH, P., SAUTER, M. (2012) Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography, Water Resour. Res., Vol 48, W03531, doi:10.1029/2011WR010868

BRAUCHLER, R., HU, R., HU, L., PTAK, T. (2012) Investigation of hydraulic parameters in unconsolidated sediments: a comparison of methods, Grundwasser, doi:10.1007/s00767-011-0185-6

HU, R., **BRAUCHLER, R**., HEROLD, M., BAYER, P. (2011) Hydraulic tomography analog outcrop study: Coupling travel time and steady shape inversion, Journal of Hydrology, 409, (1-2), 350-362, 10.1016/j.jhydrol.2011.08.031

BRAUCHLER, R., HU, R., DIETRICH, P., SAUTER, M. (2011) A field assessment of high-resolution aquifer characterization based on hydraulic travel time and hydraulic attenuation tomography, Water Resour. Res., 47, W03503, doi:10.1029/2010WR009635