

Fracture Patterns of Hard Rock – On-site Observations & Mechanics

Charlie C. Li NTNU, Norway

Jean Mandel lecture CFMR, 6 Dec. 2018, Paris, France

Contents

- Fracturing in rock pillars
- Fracturing in mine stopes
- Fracturing in burst rock
- Mechanics of hard rock fracturing
- Summary of fracture patterns

Fracturing in rock pillars

Spalling/slabbing in sandstone pillars

Slabbing – shear fracture

Shear fracture on a weakness plane

A crush pillar in a South African mine (M. du Plessis 2015)

A crush pillar in a South African mine (M. du Plessis 2015)

Crush pillar fracturing consequence (M. du Plessis 2015)

-

Facturing pattern observed in a crush pillar (M. du Plessis 2015)

Fracturing in mine stopes

Spalling / slabbing in the wall of a mine drift

- Depth: 1000 m
- Rock: chloritic quartzite

Slabbing in the mining face

- Depth: 3000 m -
- **Rock: Quartzite**

Cut-and-fill mining in a metal mine

At 1000 m: σ_1 = 63 MPa, σ_1 = 42 MPa, σ_3 = 27 MPa

Fracturing in stope E1

- No stressinduced fractures on the face
- Noises in the rock during excavation

Cut 1 in stope E1

• Spalling on the roof of Cut 1

Cut 3 in stope E1

Slabbing on the face (the roof of Cut 2)

Cut 4 in stope E1

 Slabbing on the face (the roof of Cut 3)

Fracturing in stope E2

Cut 1-1 in E2

- No stressinduced fractures on the face
- Noises in the rock during excavation

Slabbing in the roof of Cut 1-1

1-2

Cut 1-2 in E2

Slabbing on the face of Cut 1-2 (the wall of Cut 1-1)

Fracturing in stope E3

Cut 3 in E3

Tightly spaced fractures on the face of Cut 3. sub-parallel to the roof surface

Rock fracturing under dynamic loading

Strain burst

Seismic burst

Strain burst

(Li 2000)

Class II Axial strain 250 Excess 200 Axial stress (MPa) energy 50 0 0,1 0,0 0,2 0,3 0,4 0,5 Axial strain (%)

Axial stress

Seismic / fault-slip burst

(Simser 2000)

Seismic / fault-slip burst

(Li 2018)

Mechanics of hard rock fracturing

- Extension fracture dominates at low confining pressure
- Extension fracture starts at $\sigma_1 \approx 0.5$ UCS
- Shear failure at high confining pressure

(Diederichs et al. 2004)

Extension fracture and shear band

Central section of a gneiss specimen (Li, Prikry, Nordlund 1998)

Shear bands in quarzite (D. Ortlepp 1998)

Wing crack

AE events in Kuru granite at different load levels

Extension fracture

- Extension fracture starts at $\sigma_1 \approx 0.5$ UCS
- Extension fracturing lasts for a long time, having a characteristic of "creeping"

Extension fracture

Extension fracture adnd shear failure

Conclusions

- Extension fracture dominates in hard rock
- Surface spalling / slabbing / bursting is most severe in the first Cut
- The rock mass is pre-fractured in subsequent cuts
- Strain burst: The rock is finely fragmented and the burst depth is limited
- Seismic burst: Different sizes of rock blocks and the burst volume could be huge