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Mechanism of earthquakes
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Seismic faults

Animations from IRIS 

“Earthquakes occur because fault strength weakens with increasing slip or slip 
rate. What physical processes determine how that weakening occurs?”
J. Rice, 2006



Spring-slider model
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Frictional instabilities explained by a simple spring-slider model.

Fault
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Stability of the spring-slider
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• The friction law determines the stability of the system.

• Instability condition:

Importance of correctly capturing the softening behavior.
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Brittle fault zone
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Myers et al. (1994)

Damaged zone 
thickness: from ~10 m to ~1 km

Fault core
very fine crushed particles

thickness: from few µm to few mm

Principal Slip Zone (PSZ)

Poulet et al. (2014)



Field observation of Principal Slip Zones (PSZ)
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• Sizes depend strongly on physical properties of the gouge.

Fault system Thickness
of the PSZ

Reference

Median Tectonic Line, 
Japan

3 mm Wibberley et al., 
2003

Chelungpu fault, China 50-300 µm Heermance et al., 
2003

Longmenshan fault, 
China

1cm Li et al. , 2013

Punchbowl fault, USA 100-300 µm Chester et al., 
2003

Northern Apennines, 
Italy

10-40 µm De Paola et al., 
2008

PSZ in Nevada 
(Shipton et al., 2006)

PSZ in M. Maggio, Italy
(Collettini et al., 2014)

PSZ



Weakening and localization
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Major role of the width of the slip zone: 

• In the energy budget of the system: control of the frictional heating.

• In the stability of the fault (stronger weakening for thinner shear zones).

Evolution of the width of the slip zone: 

Stronger weakening favors a decrease of the localized zone thickness, heat 
and fluid diffusion tend to broaden it.

Constitutive models that can describe finite width of the slip zone: 

• Rate dependent constitutive laws (Rice, 2006, Platt et al., 2014).

• Higher order continuum theories (Sulem et al., 2011, Sulem & Stefanou, 2016).



Examples of weakening and multiphysical
couplings
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• Thermal pressurization of pore fluids 
(Lachenbruch, 1980, Sulem et al. 2005, Rice 2006, Viesca & Garagash 2015)

• Thermal decomposition of minerals : dehydration of clay minerals 
(Brantut et al., 2008), decomposition of carbonates (Sulem & Famin, 2009, 
Collettini et al., 2014).

• Flash heating and shear weakening at micro-asperity contacts 
(Rice, 1999, 2006,  Spagnuolo et al., 2016, Brantut & Viesca 2017).

Slippage 
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Increase of 
temperature
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pressure
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Importance of the grain size
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• Grain size reduction inside strain localization zones (Karato, 2008)

• Effects of grain size on physical processes
(poromechanics, friction, chemical interactions, etc...)

Need for a theory that takes into account the size of the microstructure 
and its evolution.

Exner and Tschegg (2012)

2mm 2mm

Host rock Shear band
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Cosserat continuum theory
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• Granular character of fault gouges.

• Additional dofs: rotations.

• Internal lengths related to the grain size.



Cosserat continuum plasticity
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• Drucker-Prager yield surface (Mühlhaus & Vardoulakis, 1987) with hardening:

• Generalized stress and strain invariants (Sulem and Vardoulakis, 1990):

and         are, respectively, the deviatoric part of the stress and the plastic strain.
is the internal length.
and      are coefficients.



Governing equations
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A fault zone is modelled as an infinite layer 
under shear. 

Momentum balance:

Elasto-plastic constitutive law:

Energy balance:

Mass balance:

Thermal 
pressurisation

Porosity
variation

Plastic work

Terzaghi effective stress:
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Linear stability analysis
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• Perturbation of the steady state of homogeneous
deformation, temperature and pore pressure:
!", #$%, '̅

• Onset of strain localization: sign of  Re(s).

" (, * = !" + "∗ (, *
#$% (, * = #$% + #$%∗ (, *
p (, * = '̅ + '∗((, *)

"∗ (, * = Θ exp 4 * exp(267 (8)

#$%∗ (, * = Ε$% exp 4 * exp(267 (8)

'∗ (, * = : exp 4 * exp(267 (8)

#$%∗#$%

Stable 4 < 0Unstable 4 > 0



Bifurcation analysis
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Critical value of the hardening !"# for the onset of localization. 

Stable case
!$ > !"#Re(s) 

Unstable case
!$ < !"#

(∗ 10+)

(∗ 10+)

Re(s) 



Example of bifurcation analysis
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Constitutive parameters refer to a fault zone at 7 km depth.
Bifurcation for a critical hardening modulus of !"# = 2 MPa >0

Stable case
!) = 2.1 MPaRe(s) 

Unstable case
!) = 1.5 MPa

(∗ 100)

(∗ 100)

Re(s) 



Onset of strain localization
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• Dilatancy β strongly influences the bifurcation.

• HM couplings destabilize the system for contractant materials (β<0).

• THM couplings make the system unstable for dilatant materials
in the hardening regime.

Strain
localization



Wavelength selection
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Evolution of the shear band thickness 
in function of the hardening modulus

Evolution of the maximum 
with the hardening modulus



Dominant parameters on strain localization ?
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Thermal pressurization coefficient ΛPorosity



Shear band thickness evolution
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(Ikari et al.,2008)

!"#

!"#



Grain cataclasis
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Shear experiments on Dolomite 
(Smith et al., 2015)

• Grain crushing at high mean stresses.

• Smaller grains inside the shear band.

• 30 % reduction after a strain of 15 (Gu et al., 1994).



Effect of grain size reduction
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• Exponential evolution of !"#with the total shear strain $%&:

• Progressive decrease of the shear band thickness.
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FEM analysis of a Cosserat THM model
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Implementation of a 3D fully coupled elasto-plastic Cosserat continuum: 
Redback/Moose. 



Mesh independency
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• Finite shear band thickness.

• Correct representation of weakening and energy dissipation.
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Finite element implementation
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• Weak form of the momentum balance equations:

• Weak form of energy and fluid mass balance equations:

• and      are linear Lagrange test functions.

• Incremental plastic constitutive law is integrated
using a return map algorithm (Godio et al., 2016).



Validation
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• Elastic test: Boundary layer effect (Vardoulakis & Sulem, 1995).

• Plastic test: Shearing of a layer with von Mises yield surface (Godio et al., 2016).

• Various couplings…



How to evaluate the shear band thickness ?
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Fitting of the plastic strain rate profile.

Shear band width (mm)



Linear softening
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• Drucker-Prager yield surface with linear evolution of the friction coefficient.

Load-displacement Localisation for THM

thickness obtained by LSA compatible with FEM.
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Exponential softening
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• Drucker-Prager yield with exponential decrease of the friction coefficient.

Load-displacement Localisation for THM

Limit of the LSA : Perturbed fields dominate after first stages of deformation.

Evolution of the friction 
coefficient
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Effect of the microstructure

33

• The grain size affects the shear band thickness.

• And thus, the stress-strain diagram.



Effect of the thermal pressurization
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A higher thermal pressurization coefficient Λ induces a stronger softening
(and a narrower slip zone).



Apparent rate-dependency
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Despite the use of a rate-independent constitutive law (perfect plasticity here).

Induced by the THM couplings.

Fast shearing

Slow shearing



Rate-dependency of strain localization
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Diffusion processes change the localization thickness

Fast shearing

Slow shearing



Comparison with field observations
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Example of the Punchbowl fault: Principal Slip Zone (PSZ) of 100-300µm thick.

Shear band thickness prediction
consistent with field observations

PSZ

Chester et al. (2005),  Rice (2006)

5 mm

Range of band 
width observed

R=10 µm

#$
ℎ



Conclusions (1/2)
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• The use of the Cosserat continuum  is appropriate for modeling fault 
gouge microstructure and obtaining finite thickness of the localized zone. 
Thus, Energy dissipation is correctly quantified. 

• The onset of strain localization and the evolution of the shear band 
thickness are investigated with LSA.

• Development of a robust numerical tool for fully coupled Cosserat THM 
systems.

• Post Bifurcation regime and shear band thickness evolution are 
investigated with FEM considering THM couplings.



Conclusions (2/2)
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• The thickness obtained by LSA are comparable to FEM as long as the 
assumptions for linearization around a homogeneous state are valid.

• Rate dependency appears (in this model) at the macro-scale as a result of 
an evolving shear band thickness due to thermal pressurization and 
diffusion processes.

• The predicted thickness of the localized fault zone is in agreement with 
field observations.



Perspectives
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Short term

• Extension of the analysis to account  for other weakening processes active 
in fault zones during seismic slip (grain cataclasis, chemical effects, flash 
heating, …).

• Assessment from the numerical analyses of the fracture energy and 
compare it with experimental and field observations.

• Comparison or merge with a rate dependent plastic model.

Long term

• Need for advanced laboratory experiments and field observations to 
constrain the model.

• Large scale modelling.



Thank you for your attention !
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