Monitoring and Numerical Modelling of Induced and Triggered Seismicity in a Deep Sublevel-Stoping Mine

Francesca De Santis ^(1,2), Yann Gunzburger ⁽²⁾, Vincent Renaud ⁽¹⁾ Isabelle Contrucci⁽¹⁾, Pascal Bernard⁽³⁾

(1) Institut National de l'Environnement Industriel et des Risques (Ineris); (2) GeoRessources, Université de Lorraine; (3) IPGP

maîtriser le risque pour un développement durable

Why compare seismic and model data?

Microseismic Monitoring Real-time monitoring for short-term prevention *Numerical modelling* Optimization of future excavations

Finding possible links

- > Better understanding of interactions between stress changes and seismic activity generation
- Gaining additional insights into failure processes
- Improving long-term and short-term prevention

Garpenberg mine

Geographic and Historical context

Schematic vertical profile of Garpenberg mine

- Acquired by Boliden in 1957 (300.000 tonnes/year)
- Discovery of Lappberget orebody in 1998
- Production moved in Garpenberg North in 2004

Garpenberg mine

Production & Injuries

Number of injuries (1996-2014)

Mass mining methods

Improve automation and digitalization

Microseismic monitoring

₿B(

INSTITUT DE PHYSIQUE DU GLOBE DE PARIS

Lappberget orebody

Mining method and sequence

Sublevel stoping method with backfilling

3D view between 2 levels

Mining sequence

Lappberget orebody

Local geology

Mechanical properties			
Materials	Young modulus E [MPa]	Poisson's ratio V	Density ρ [kg/m³]
Ore	66000	0.2	
Limestone	57000	0.18	2020
Weak	20000	0.3	3030
Very weak	2000	0.4	

Lack of data:

- Characteristics of fractures, joints or faults
- Mechanical properties of rock types
- No 3D information except for the orebody

BOLIDEN R

Analysis of Lappberget Microseismic Activity between 2015 and 2016

Space-time distribution

BOLID

doppement durable

8

Cluster of MSE

Cluster of MSE

NE-R

DU GLOBE DE PARI

pour un développement durable

Seismic source characteristics

Fracture size and Apparent Stress

- Median RC radius = 0.9 m
- Median CC radius = 3 m

11

- \succ Apparent stress ⇒ measure of stress release at a seismic source
- Bigger stresses in the Right Cluster area

Seismic source characteristics

Apparent stress

Contour maps of apparent stress

First period

Second period

Central Cluster	Right Cluster
In agreement with production in the area	Linked with remote blasting in stope 13
Active since the beginning of the monitoring	Activated at final stages of stope 13 exploitation + Influenced by local geology
Bigger fractures	Smaller fractures
Lower apparent stress values	High apparent stress values

Numerical Modelling Simulation of the exact mine sequence between 2015 and 2016

Numerical Model Geometry & Meshing

Numerical Model

Geometry & Meshing

un développement durable

Numerical Model Boundary Conditions & Mechanical Parameters

Initials & Boundary Conditions

$$\sigma = f(z) = \rho g \begin{pmatrix} k_X \\ k_Y \\ 1 \end{pmatrix} z \qquad \begin{cases} \sigma_X = 44.3 \ MPa \\ \sigma_Y = 47.3 \ MPa \\ \sigma_Z = 34 \ MPa \end{cases}$$

Failure criteria

Hoek-Brown
failure criteria
$$\Rightarrow \frac{\sigma_1}{\sigma_c} = \frac{\sigma_3}{\sigma_c} + \sqrt{m\frac{\sigma_3}{\sigma_c} + s}$$

Brittle failure criteria

⁽Souley et al., 2018)

	Elastic parameters		H F	loek-Brow barametei		
Materials	Young modulus E [MPa]	Poisson's ratio v	т	5	σ _c [MPa]	Density ρ [kg/m³]
Ore	66000	0.2	10	0.112	188	
Limestone	57000	0.18	10	0.112	110	2020
Weak	20000	0.3	1	0.001	30	3030
Very weak	2000	0.4	0.63	0.00024	10	
Paste	500	0.2	-	-	-	2000
	Brittle failure criteria parameters				-	

Materials	m _r	$\sigma_{3}{}^{b-d}$	s _r	ξŗ	β_m	b ₁
Ore	2	$\sigma_{C}^{*}(s)^{1/2}$	s*1e-5	0.0025	tan(15°)	750

BOLIDE

17

Numerical Model

Model Results

 $q^{ini} = 12.1 MPa$ $\sigma_x^{ini} = 44.3 MPa$ $\sigma_{y}^{ini} = 47.3 MPa$ $\sigma_z^{ini} = 34 MPa$

Deviatoric stress^{*} [MPa]

5.0000E+01
4.7500E+01
4.5000E+01
4.2500E+01
4.0000E+01
3.7500E+01
3.5000E+01
3.2500E+01
3.0000E+01
2 7500E+01
2 5000E+01
2 2500E+01
2 0000E+01
1 7500E+01
1.5000E+01
1.0000E+01
1.2000E+01
7 5000E+00
5.0000E+00
0.000000000

ÍPGP

INE-RI

un développement durable

Numerical Model

Model Results

INE-RIS

nour un développement durable

ÍPGP

Seismic Data and Model Data comparison

1st approach of comparison: individual measures

Seismic parameters Punctual measures at seismic events locations □ *Model parameters* Measures within the whole space

Model parameters calculated inside meshes at the position of MSE location

Seismic	Model			
parameters	parameters			
E – seismic energy	Stress variables	Strain variables		
M _o – seismic	σ_1 – max.	$\varepsilon_1 - max.$		
moment	principal stress	principal strain		
M _w – moment	σ ₂ – inter.	ε ₂ – inter.		
magnitude	principal stress	principal strain		
f _c – corner	σ ₃ – min.	ε ₃ – min.		
frequency	principal stress	principal strain		
σ _{app} – apparent stress	σ_{ij} – stress tensor	ϵ_{ij} – strain tensor		
V _{app} – apparent	σ _q – Von Mises	ε _q – Von Mises		
volume	stress	strain		

 $\Delta \sigma$ – stress drop

Qualitative Analysis

Seismic parameter

Quantitative Analysis: Principal Component Analysis

Ø

maîtriser le risau

2nd approach of comparison: cumulated measures

 \Leftrightarrow

Seismic parameters Punctual measures at seismic events locations *Model parameters* Measures within the whole space

Cumulated model parameters calculated inside the spheres of 10 m radius around each seismic events location

Seismic parameters	Model parameters		
E – seismic energy	Elastic	Plastic	
M _o – seismic moment	Volumetric elastic energy	Volumetric plastic energy	
V _a – max. principal stress	Shear elastic energy	Shear plastic energy	
A _s – Source area	Total elastic energy	Total plastic energy	
		Plastic volume	
	Mean Von Mises stress and strain		
	Mean of max. shear strain		

Volumetric strain

Shear strain

Qualitative Analysis

Apparent volume
$$\Rightarrow V_a = \frac{M_0^2}{2\mu E} \ [m^3]$$

Plastic volume \Rightarrow volume of plastic zones in the spheres

Qualitative Analysis

$$\begin{cases} \text{Source area} \Rightarrow A_s = \pi r^2 [m^2] \\ r \text{ determined from } f_c = k_c \frac{V_s}{r} \\ \text{Volumetric strain} \Rightarrow \textbf{t}_r(\epsilon) \end{cases}$$

$$\begin{cases} \text{Apparent volume} \Rightarrow V_a = \frac{M_0^2}{2\mu E} \ [m^3] \\ \text{Von Mises strain} \Rightarrow \varepsilon_q = \sqrt{\frac{4}{3}J_2} \end{cases}$$

Discussion and Perspectives

- > Seismic & numerical model shows increasing stresses around the main production area
- Spatialization problem
 - Uncertainties in events location & model uncertainties
 - Reactivation of preexisting structure not taken into account in the model
- > Cumulating seismic and numerical parameters in space correlations are improved
 - Improvement of events detection and location
 - Detection: bigger number of seismometers and continuous recordings
 - Location: new location methods based on double difference and multiples analysis
 - Include fractures in the model
 - Bigger fractures of CC may be modeled based on focal mechanism of MSE
 - Smaller fractures of RC cannot be included in the model with the actual mesh ⇒ reduce mechanical properties of some meshes?
 - Taking creep into account
 - Seismic swarms are long lasting in time (more than 1 month)
 - Stress measurements have sown a differential response of deformations during time

Questions ?

References

- DeSantis, F., Contrucci, I., Lizeur, A., Tonnellier, A., Matrullo, E., Bernard, P., Nyström, A., 2017. Numerical approach for evaluating microseismic array performances: case study of a deep metal mine monioring network, in: Proceedings of the 9th International Symposium on Rockbursts and Seismicity in Mines.
- Tonnellier, A., Bouffier, C., Renaud, V., Bigarré, P., Mozaffari, S., Nyström, A., Fjellström, P., 2016. Integrating microseismic and 3D stress monitoring with numerical modeling to improve ground hazard assessment, in: Proceedings of the Eighth International Symposium on Ground Support in Mining and Underground Constructions. eds. E. Nordlund et al., University of Technology, Luleå, Sweden.
- Souley, M., Renaud, V., Al Heib, M., Bouffier, C., Lahaie, F., Nyström, A., 2018. Numerical investigation of the development of the excavation damaged zone around a deep polymetallic ore mine. International Journal of Rock Mechanics and Mining Sciences, 106, 165-175.
- Wyss, M., Brune, J.N., 1968. Seismic moment, stress, and source dimensions for earthquakes in the California-Nevada region. J. Geophys. Res. 73, 4681–4694.

INE-RIS

Technical Workshop Observation et Surveillance des Risques Géologiques et Géotechniques

Technical challenges of in situ stress measurements

Les défis techniques des mesures de contraintes in situ

Campus ARTEM 21-22 Nov. Nancy, FRANCE 2018

Contact & Information osr2g@ineris.fr thttp://cenaris.ineris.fr

COGGUS²

COMPUTATIONAL & GEOENVIRONMENTAL GEOMECHANICS FOR UNDERGROUND AND SUBSURFACE STRUCTURES

VISIT OUR WEBSITE (coming soon) coggus2.univ-lorraine.fr

CONTACT coggus-2@univ-lorraine.fr

INE-RIS

Space-time distribution

PGF

alonnament durahl