

The rock-mechanical behavior of Opalinus Clay – synopsis of 20 years of experience at the Mont Terri rock laboratory

CFMR Paris, March 17, 2016

D. Jaeggi, C. Nussbaum, P. Bossart, swisstopo

- 1. Introduction
- 2. Sampling and rock mechanical testing
- 3. In-situ stress testing
- 4. Excavation damaged zone (EDZ)
- 5. THM-modeling
- 6. Conclusions

The 16 Partners of the Mont Terri Project

138 in-situ experiments since 1996

Motorway tunnel

Swiss concept and repository evolution

Steel container Bentonite buffer

- Experiments are linked to repository evolution
- Mechanical experiments important for construction and emplacement phase

1. Introduction

2. Sampling and rock mechanical testing

- 3. In-situ stress testing
- 4. Excavation damaged zone (EDZ)
- 5. THM-modeling
- 6. Conclusions

Specimen extraction and sampling strategy

Effects on the clay specimen:

- Stress relief
- Desiccation
- Increased temperature (frictional)
- Mechanical damage, excess pore water pressure

Countermeasures:

- Reduce drilling speed, adapt technique (triple core, air flushing)
- Reduce time of exposure, immediate conditioning
- Use larger diameters

Specimen conditioning

Desiccation leads to:

- Increase of strength
- Desiccation cracks + discing

Adapted conditioning:

- Triple core drilling
- Determination of water content
 on-site
- Immediate sealing in aluminum foil
- Saturation of samples to constant suction in lab

Unconsolidated undrained compression tests

Opalinus Clay shares many similarities with both soils and rocks:

•	strong non-linearity	(soil)
•	micro-acoustic events	(brittle rock)
•	strong dilatancy for $\sigma_3 < 1$ MPa	(soil)
•	CI independent of σ_3	(brittle rock)

Amann et al. (2011, 2012, 2015)

The influence of suction

- Substantial influence of suction on strength
- Similarities with soils: "shrinkage limit" equals the "air-entry value"
- Strength loss due to cyclic variations of relative humidity

Wild et al. (2015)

State-dependent anisotropy

- Effect of orientation to anisotropy higher at higher suction
- UCS versus water content shows steeper slope for s-samples
- Clear influence of anisotropy

Wild et al. (2015)

Impact of facies on rock stiffness

Clear difference between homogeneous shaly facies and sandy facies

- Scatter of data
- Absolute values
- Slope steeper for sandy facies (P-samples)

Challenges for rock-mechanical testing of Opalinus Clay

- Rock anisotropy
- Significant heterogeneity of sandy facies
- Scale dependency, REV
- Effect of sample size
- Sample extraction and conditioning (suction, damage)
- Few data out of the sandy facies

- 1. Introduction
- 2. Sampling and rock mechanical testing

3. In-situ stress testing

- 4. Excavation damaged zone (EDZ)
- 5. THM-modeling
- 6. Conclusions

In-situ stress testing at Mont Terri

Mont Terri

rock laboratory

BDS-2

SSE

3000 m

BDS-2

Passwang Formation

Opalinus Clay

sandy facies

shaly facies

BIS-A1 BIS-B1 BIS-C1 BIS-C2

BIS-D1 to D4

Experiment	Borehole	Method	Documentation	NNW	Mon	t Terri
Determination of stress	BDS-5	Hydraulic stimulation	Jaeggi & Bossart (2015), Vietor & Doe (2015)	m. a. s. l. 1000 -	Mont Terri	Main Fault Mo
Determination of stress	BDS-3	Overcoring	Hesser (2014)		tunnel BDS-5	rock
In situ stress, overcoring	BIS-D1 – BIS-D9	Overcoring	Heusermann et al., (2014)	500 -	BDS	BIDS-3
Determination of stress	BDS-1 and BDS-2	Hydraulic stimulation	Rummel et al. (2012)			
Determination of stress	BDS-2 and BDS-4	Hydraulic stimulation	Enachescu (2011)	0	1000	2000
Determination of stress	BDS-1	Laboratory analyses using RACOS®-tests	Jahns (2011)	0 m 150 m	300 m	Motorway tunnel Security Gallery
Anisotropy and rock stress	BAS-1 – BAS-6	Overcoring	Shin (2006, 2009)	BDS-1 BE2-A27/2 BDS-3 BDS-5	8 BIS-D5 & D7 8 BAS-1 - 6	June -
EDZ cut-off	BEZ-A27 and BEZ-A28	Overcoring	Lahaye (2005)	Staffele		
In situ stress, borehole slotter	BIS-B1	Dilatometer, Borehole slotter	Bühler (2000), König & Bock (1997)	gg BIS-C & D9 Formati		BDS-4
In situ stress, hydraulic stimulation	BIS-C1 and BIS-C2	Hydraulic stimulation	Evans et al. (1999)	on Gro		
In situ stress, over- and undercoring	BIS-A1	Overcoring, Undercoring	Bigarré (1996, 1997), Bigarré & Lizeur (1997), Bigarré et al. (1997)	lay ss Wolf Member theim Member	shaly facies	shaly facio sandy facies

In-situ stress measurements methods

- Hydraulic methods (provide only direct measure of stress)
 - Hydraulic Testing on Pre-existing Fractures (HTPF)
 - Hydraulic stimulation
- Borehole failure methods (useful in high-stress situations)
 - Borehole breakouts
 - Drilling-induced tension fractures
- Stress relief methods (measure strain, not stress)
 - Overcoring (various types of gauges)
 - Borehole slotter
 - Under-excavation technique
- Earthquake fault plane solutions (large-scale stress)

Methods applied at Mont Terri are highlighted in red

Results from 33 analyzed tests

Orientations of principal stresses

n=33

Magnitudes of principal stresses

Jaeggi & Bossart (2016), in prep.

In-situ stress testing across décollement

- BDS-5 drilled across the main décollement
- Opalinus Clay thrust onto upper Jurassic limestones
- Opalinus Clay strongly tectonized
- → Decoupling across décollement?
- 11 hydraulic stimulation tests \bigstar
- 10 impression packer tests
- pre- and post-frac ABI

Jaeggi & Bossart (2016), in prep.

Hydraulic stimulation data of BDS-5

Controls on in-situ stress and mechanisms

- Excavation controlled stresses
 - Primary and secondary stress field
 - 2-3 tunnel diameters
- Depth controlled stresses
 - Topography important at shallow levels
 - Tectonic bench-vice at deeper levels
- Lithology controlled stresses
 - Rock competence (UCS, elastic parameters)
 - Backbone and stress transfer in stiff rocks

Proposed stress tensor							
σ ₁ σ _{2/3} σ _{3/2}	6-7 MPa 4-5 MPa 2-3 MPa	210/70° 320/10° 050/15°	subvertical subhorizontal subhorizontal				
Ma (20	Martin & Lanyon (2003), Bossart & Wermeille (2003) - $\sigma_{2/3}$ in plane but not well defined						
σ ₁ σ ₂ σ ₃ Ena	8.6 MPa 6.7 MPa 3.9 MPa chescu (201	033/0° 123/70° 303/20° 11)	horizontal subvertical subhorizontal				
$\sigma_1 \ \sigma_2 \ \sigma_3$	15 MPa 8 MPa 4 MPa n (2006, 200	320/0° 070/0° 09)	subhorizontal subhorizontal subvertical				

- 1. Introduction
- 2. Sampling and rock mechanical testing
- 3. In-situ stress testing

4. Excavation damaged zone (EDZ)

- 5. THM-modeling
- 6. Conclusions

Resin impregnation technique for EDZ characterization

EDZ development and observations on various scales

Stress-induced breakouts

Mechanical controlled breakouts

breakouts where bedding plane is tangential to borehole circumference

- tangential shear fractures
- Extensional fractures and secondary shear fractures
 - interconnected fracture network
- Intermediate-term BDZ (within days)
 - tangential fractures in the opposing direction
 - further bedding parallel fractures, buckling chimney

EDZ - hydraulic properties and self-sealing

- Pneumatic tests / short intervals:
 Gas permeability high close to tunnel wall
- Self-sealing tests (hydraulic):
 - Swelling closes fractures
- Self-sealing tests (mechanical):
 - Mechanical confinement through buffer
- Cyclic deformations:
 - Humidity variations change properties of EDZ

Conceptual model of EDZ for tunnel towards South (HM-coupling)

Martin & Lanyon (2002)

- 1. Introduction
- 2. Sampling and rock mechanical testing
- 3. In-situ stress testing
- 4. Excavation damaged zone (EDZ)
- 5. THM-modeling
- 6. Conclusions

Selection of numerical models applied at Mont Terri

Experiment	Year	Content	Model type	Constitutive Model	Code
HM-A	2015	HM- modeling tunnel of rock lab (collaboration swisstopo, EPFL)	Hydro-Mechanical coupled	Bilinear strain-hardening/softening ubiquitous joints APD (Anisotropy, plasticity, damage)	FLAC 3D CODE-ASTER
FE	2012	Predictive modeling of FE	Hydro-Mechanical coupled	Bilinear strain-hardening/softening ubiquitous joints	FLAC 3D
DR	2010	Modeling of diffusion experiment	Hydro-Chemical	Reactive transport model	PHREEQC
MB	2009	Excavation of MB niche	Hydro-Mechanical coupled	Bilinear strain-hardening/softening ubiquitous joints	FLAC 3D
EZ-A	2006	Stability of EDZ around EZ-A	Hydro-Mechanical coupled	Elastoplastic, Mohr Coulomb	FLAC 3D
Gallery04	2005	Deformations in EZ-B and HG- A niches	Hydro-Mechanical coupled	Elastoplastic, Mohr Coulomb	FLAC 3D
VE	2004	Modeling of micro tunnel	Hydro-Mechanical coupled	Elastoplastic model	CODE-BRIGHT
HE-D	2004	Modeling HE-D Experiment	ТНМ	Elastoplastic model Elastoplastic model Isotropic poroelastic model	FLAC 3D, CODE-BRIGHT CODE-ASTER
HE	2002	Modeling of HE niche excavation	Hydro-Mechanical coupled	Elastoplastic ubiquitous joints	FLAC 3D
RA	2001	Modeling EDZ behavior	Hydro-Mechanical coupled	Bilinear strain-hardening/softening ubiquitous joints	FLAC 3D
DM	1999	Deformation mechanisms, new constitutive law	Hydro-Mechanical coupled	Bilinear strain-hardening/softening ubiquitous joints	FLAC 2D
ED-B	1999	Numerical modeling of the EDZ with PFC	Hydro-Mechanical coupled	Isotropic Mohr Coulomb Isotropic particle flow, incl. damage	FLAC 3D PFC
ED-B	1998	Modeling EDZ Gallery 98 section	Hydro-Mechanical coupled	Elastoplastic ubiquitous joints	FLAC 3D

Coupled THM simulation of a heater experiment

Team F.O.		Country	Code	2D/3D
UFZ	BGR	Germany	OpenGeoSys	3D
CAS	CAS	China	EPCA3D	3D
LBNL	DOE	USA	TOUGH-FLAC	3D
ENSI	ENSI	Switzerland	OpenGeoSys	3D
CNSC	IRSN	Canada/France	COMSOL	3D
JAEA	JAEA	Japan	THAMES	3D
KAERI	KAERI	South Korea	FLAC	3D
CNWRA	NRC	USA	FLAC-xFlo	2D

Decovalex, ANDRA, GRS Niche FM-C New Gallery Niche HE-D Heater 1 Niche MI BHE-D5/-6 BHE-D-15 -Heater 2 HE-D

10 m

- Heater experiment HE-D, THM responses
- Equilibration, 2 phases of heating, cooling
- Benchmarking with 8 modelling teams, different codes

Coupled THM simulation of a heater experiment

Distance to heater: 1.42 m

Distance to heater: 1.11 m

- Good agreement for temperature
- Higher differences for pore water pressure (not all aspects of evolution covered)
- General trend for deformation with much more variations

Decovalex, ANDRA, GRS

New constitutive law for Opalinus Clay (APD)

- Anisotropy (calibration through non-linear regression)
- Plastic formulation (Non-linear yield function with bounding surface)
- Damage formulation (Damage coupled with plastic hardening, modification to account for residual value of damage)
- Localization and regularization (Fernandez & Chambon, 2008)
- → Numerical implementation into Code_Aster

Conclusions

- Standardized protocols for sampling and conditioning of shale-rock samples are required.
- More data from the heterogeneous sandy facies have to be acquired.
- Magnitude and orientation of in-situ stress tensor depends on local geometry, depth, rock stiffness
- The EDZ has a large impact on tunnel stability. It exhibits a high complexity in tectonized, anisotropic and heterogeneous rocks.
- Prediction of deformation in Opalinus Clay is still a challenging task due to its post-failure behavior. New tools are available now.

Selected references

- Amann, F., Button E.A., Evans K.F. Gischig, V. S. & Blümel, M. (2011). Experimental study of the brittle behavior of Clay shale in short-term unconfined compression. *Rock Mech Rock Eng* 44 (4), 415-430.
- Amann, F., Kaiser, P. K. & Button E.A. (2012). Experimental study of the brittle behavior of Clay shale in rapid confined compression. *Rock Mech Rock Eng* 44 (1), 21-33.
- Amann, F., Martin, C. D. & Wild, K. M. (2015). The role of capillary suction and dilatancy on the interpretation of the confined strength of clay shales. Montreal: *ISRM Congress 2015 Proceedings- Int'l Symposium on Rock Mechanics*, 8p.
- Bossart, P., Meier, P., Möri, A., Trick, Th. & Mayor, J. C. (2002). Geological and hydraulic characterization of the excavation disturbed zone in the Opalinus Clay of the Mont Terri Rock Laboratory. *Engineering Geology* 66, 19-38.
- Bossart, P. & Thury, M. (2008). Mont Terri Rock Laboratory. Project, programme 1996 to 2007 and results. Wabern: *Reports of the swiss Geological Survey* 3.
- Jaeggi, D. & Bossart, P. (2016, in prep.). Borehole BDS-5 near Derrière-Montterri, Courgenay, Switzerland, Synthesis report. Wabern: *Reports of the swiss Geological Survey*.
- Kupferschmied, N., Wild, K.M., Amann, F., Nussbaum, Ch., Jaeggi, D. & Badertscher, N. (2015). Time-dependent fracture formation around a borehole in a clay shale. *International Journal of Rock mechanics & Mining Sciences* 77,105-114.
- Martin, C. D., Lanyon, G.W., Blümling, P. & Mayor, J.-C. (2002). The excavation-disturbed zone around a test tunnel in the Opalinus Clay. Toronto: *Proceedings of the North-American Rock Mechanical Society Meeting*, 6p.
- Parisio, F., Semat, S. & Laloul, L. (2015) Constitutive analysis of shale: a coupled damage plasticity approach. International Journal of Solids and Structures 75-76, 88-98.
- Wild, K. M. & Wymann, L. P. (2015). Water retention characteristics and State-Dependent Mechanical and Petro-Physical Properties of a Clay shale. *Rock Mech Rock Eng* 48, 427-439.