

Principes et Méthodes de Conception des Grandes Cavernes Hydroélectriques Souterraines

F. Laigle

EDF – CIH Centre d'Ingénierie Hydraulique

Séance Technique du 4 juin 2015 Conception des cavernes souterraines

Particularités des grandes cavernes hydroélectriques

Expériences de CDF dans le domaine des cavernes souterraines

Données Statistiques sur les cavernes hydroélectriques

Comportement et mécanismes potentiels de ruine

Outils de calcul et critères d'interprétation

Conclusions

Particularités des grandes cavernes hydroélectriques

- Géométries non circulaires et spécifiques
- Grandes dimensions
- Grandes profondeurs
- Interfaces et connexion avec de nombreux autres ouvrages.
- Des phasages spécifiques de creusement
- Faible élancement Longueur/Largeur

Difficile de mettre en œuvre des structures de soutènement et de revêtement rigides (Revêtements en béton ou cintres) Nécessité de mobiliser au maximum le terrain pour assurer et participer à sa propre stabilité Boulons et béton projeté – Tirants précontraints

Expérience eDF dans le domaine des cavernes hydroélectriques

- **37 Aménagements avec des usines souterraines en France.**
- Différents contextes géologiques
- •La plus large: 36 m (Caverne du Sautet)
- La plus vieille: Brommat I en 1933
- La dernière en cours de construction: Romanche-Gavet

Ouvrages hors France

- 2000: Large Hadron Collider Project (CERN)
- 2015: Terhi Underground powerplant (India)
- 2015: Gilboa Underground Powerplant (Israel)

Caverne de Tehri (Inde - NTPC)

<image>

Données statistiques sur les cavernes hydroélectriques

(From "International Water Power & Dam Construction")

- Portée en fonction de la puissance unitaire des groupes
- Seulement 4% des cavernes ont une portée supérieure à 30 m
- Profondeur moyenne: 230 m

• La plupart des cavernes sont postionnées dans des roches de moyenne ou bonne qualité:

• Q: 0.7 to 5

• RMR: 40 to 60

USINE de la SAUSSAZ Coupe transversale

- 1. Voûte en béton (épaisseur en clé : 80 cm)
- 2. Revêtement des piédroits en béton (e = 70 cm)
- 3. Butons métalliques

MAUVAIS TERRAIN

Comportement et mécanismes potentiels de ruine

Mécanisme	Outils de calcul	Critères d'interprétation	A TOTAL A	
	Mécanisme de blocs	Approche discontinue	Définition d'un coefficient de	le
		Modèles aux éléments discrets	sécurité	1 Martina
	Structurally Driven Mechanism		Contraintes et/ou déformations dans les boulo	ns.
		Approche d'équilibre limite	Contraintes dans les structures de soutènement/revêtement.	
	Mécanisme de rupture fragile	Approche continue avec un comportement élastique linéaire. FEM, FDM, Elements frontières	Analyse du champ des contraintes	
	Stress			
	Driven Mechanism			HI IS
			Analyse du champ des	

Mécanisme de cisaillement

Continuous Plastic behaviour

Approche continue nonlinéaire

Modèle de comportement "pertinent" dans le domaine des moyennes et grandes "déformations" i.e au-delà du pic de résistance

FEM ou DEM Codes

déformations de cisaillement

Analyse des déplacements

Estimation des efforts et/ou déformations dans les boulons

Estimation des contraintes dans les structures de revêtement et de soutènement.

Etablissement d'un abaque d'aide à la démonstration de faisabilité

- La Profondeur
- L'indice Q-NGI
- La résistance en compression simple de la matrice rocheuses

Mécanisme de cisaillement

Mécanisme

Continuous Plastic behaviour Approche continue nonlinéaire Modèle de comportement "pertinent" dans le domaine des moyennes et grandes "déformations" i.e audelà du pic de résistance

Outils de calcul

Analyse du champ des déformations de cisaillement Analyse des déplacements Estimation des efforts et/ou déformations dans les boulons Estimation des contraintes dans les structures de revêtement et de soutènement.

Critères d'interprétation

Mécanisme de cisaillement – Milieu continu

Caverne souterraine à 500m de profondeur dans des phylites Résistance en compression simple entre 35 to 50 MPa

Soutènement : béton projeté et boulons

Nécessité d'une loi de comportement avec une description "pertinente" et "justifiée" des évolutions de la cohésion et de l'angle de dilatance

Conclusions

Considérations générales sur la conception des soutènements

NATM

 1/ La stabilité repose essentiellement sur le comportement du massif Les soutènements renforcent le massif Soutènement « souple » → Béton projeté et boulons scellés

2/ Le béton projeté peut avoir une épaisseur limitée (<20cm).

CERN-LHC: 20 cm de béton projeté Fonction locale ayant un effet global en limitant la désorganisation du massif au voisinage du parement Soutènement souple: Attention à la fissuration du béton projeté en voûte !!

3/ Si milieu « continu », le boulonnage n'a pas lieu d'être excessivement long:

L(m)=2+0.2 x portée(m) (cf GT30) Privilégier la densité.

4/ Structure « souple »:

Difficulté potentielle de dimensionnement des voûtes rigides Critères de convergences? **0.5 à 1%**

5/ En préfaisabilité, Q > 0.7

6/ Attention au choix du modèle rhéologique dans le cas d'un milieu « continu »

