

Comité Français de Mécanique des Roches Association Française des Tunnels et de l'Espace Souterrain

Séance technique du 4 juin 2015

Caverne principale – Nant-de-Drance

Etienne Garin, BG Ingénieurs Conseils SA, Lausanne, Suisse

Nant-de-Drance vue d'ensemble

Nant-de-Drance vue d'ensemble

Galeries d'amenée : 2 x 1660 m Puits : 2 x 440 m Galeries d'accès : 11 660 m Cavernes principales : 290 000 m³ Machines: 6 x 150 MW Production: 2500 GWh

Investissement: 2 Mia CHF

Dimensions exceptionnelles

Caverne des machines (KMA) 250 000 m3

35 m

Dimensions exceptionnelles

194.25 m

BG Géologie prévue pendant excavation galerie d'accès

EG Géologie relevée à l'exécution de la calotte (première étape, A1)

Alternance de gneiss schisteux et micaschistes

Alternance de micaschistes, gneiss schisteux et métagrauwackes

Alternance de métagrauwackes et micaschistes

Reconnaissances: 5 sondages carottés jusqu'à 660 m de profondeur

Dilatomètre en forage

Hydrofracturation (détermination du champ de contraintes en place)

100 essais de laboratoire de mécanique de roches:

- Compression simple et triaxiale
- Traction indirecte (essai brésilien)
- Cisaillement direct

BG

Mécanique des roches

Diaclase au contact entre gneis et métagrauwacke avec remplissage de kakirite

Carottes de micaschistes provenant du secteur de la caverne

Micaschistes au front

Image d'une fracture au BHTV, avec remplissage argilo-limoneux

Mécanique des roches: caractéristiques du massif

- Qualité: bonne à très bonne
- GSI : 75-90
- f_c : 62 MPa
- f_t : 10 MPa
- E : 26 GPa
- Contraintes en place : 12-17 MPa
- Excellente concordance entre état en carottes et sur site

Comportement anisotrope: 2 lois constitutives différentes

Détermination des valeurs Xk sur la base des essais de laboratoire

Ergebnisse der einachsigen Prüfungen (42 Proben)		f _c [MN/m ²]		f _t [MN/m ²]		E (50%)	Ψĸ	v	γ	Résultats des essais triaxiaux (8)		c [MN/m²]		φ [°]		E (50%)	
										-	Valouro		résiduel	pic I	résiduel	[MN/m ²]	[%]
										Xm	moyennes	10,8	5,2	36 29	29	20 000	0,56
_	1	Matrix	Schieferung	Matrix	Schieferung	[MN/m ²]	[°]		[kN/m ³]	_Xk	Valeurs caractéristiques		3,3		26	16 000	0,45
X _m	Mittelwert	62.4	36.3	9.7	5.6	25'800	20	0.13	27.9	Cv	Coefficient de variation (s/Xm)		0,30		0,09	0,22	0,13
Xk	Kennwert	28.2	16.6	7.1	2.1	17'000	20	0.13	27.9		distant.	A DECK	Internet		TET		
C,	Variations- Koeffizient (s/X _m)	0.29	0.51	0.20	0.52	0.28	0.05	0.41	0.02		IO677-KMAI	2.2177	6 0				
f _c : ei	nachsige Druckfe	stigkeit	$f_k : Z$	ugfestigk	eit												
γ: Ei	inheitsgewicht		ψ _k :1	Dilatanz-V	Vinkel												
	45 40 EdW 35			_		Hüllkurve d Fairhurst G	ler Geb leichun	irgsfesti g	gkeit nach				Tapapapapapapapapapapapapapapapapapapap		0		
Blaue Linie: Gesteinsmatrix								90									
	20 -	1/2		~	1	Rote Linie:	entlang	, Schiefe	rung		[e 80	_					
	-10 0	10 N	20 30 formal stress s	40 50 2 [MPa]	60 70	Ge voi	rade gr n Triax	üne Lini ialversud	e: Restwerte chen		b 70 b 60 c 60 c 60 c 60 c 70 c 70 c 70 c 70 c 70 c 70 c 70 c 7		Hoek-Brow s=0.87 valeurs de fracturée vi + Points expé	n (M-W); (Xk); mb= Tissière Géologues n al. min. rrimentaux	=0.814;		
											0	0 Contrainte	-50 -100	-150 e. p' [MPa]	-200		

Variations des modules de déformation Ed (chargement) et élastique Ee (déchargement) mesurés au dilatomètre en fonction de la profondeur dans le gneiss

 σ v = 15-16 MPa

 $\sigma_h = 9-10 \text{ MPa}$

Orientation des cavernes de manière favorable par rapport à la direction de la contrainte principale (horizontale) in situ déterminée par hydrofracturation

Orientation des cavernes de manière favorable par rapport à la direction de la schistosité

Confirmation des orientations relevées en surface et en sondages par les relevés structurels des avancements

Mécanique des roches

Détermination des situations de risque et des états limites

- Chute de blocs
- Effondrements en zone de faille
- Décompressions violentes
- Venues d'eau
- Déformations plastiques

Analyse à court et long terme de la stabilité d'ensemble

Analyse de la stabilité des dièdres

Dimensionnement du soutènement et du revêtement

Projet de la structure porteuse

- Modèle du massif: géotechnique
- Modèles de calcul: discontinu et continu
- Interaction sol-structure: lois constitutives
- Justification de la capacité porteuse
- Bases pour la surveillance et le contrôle pendant les travaux

Dimensionnement du soutènement

Soutènement:

BG

1ere couche 10 cm béton projeté fibré ancrages au mortier ø32 de 6 – 8 m
2e couche 10 cm de béton projeté armé d'un treillis.

Revêtement:

60 cm de béton armé.

BG

Dimensionnement du soutènement

Optimisation du soutènement

22

Modèles de calcul

Situations de risque déterminantes:

- Dièdres: modèle de blocs
- "poussée" du massif, déformations plastiques: modèle de milieu continu

Modèles de calcul: modèle de blocs

Résulta direct su	ts des essais de cisaillement ur joints (14)	[k	φ [°]	
		pic	résiduel	
Xm	Valeurs moyennes	179	0,26	25
Xk	Valeurs caractéristiques	130	0	23

Modèles de calcul: modèle de blocs

Adaptation du schéma de boulonnage aux fractures relevées en travaux

Modèle 3-D: effets des étapes d'excavation et des sections partielles

Modèle 3D: effet des intersections

BG

Optimisation du soutènement, études paramétriques Variation du module d'élasticité du massif

Dimensionnement de la voûte suspendue

Moments de flexion en voûte

Poutre de support de la voûte

Surveillance des déformations

- 5 profils de convergences optiques
- 3 profils avec 7 extensomètres
- 18 ancrages précontraints avec cellules de pression

WASCHIED PLANER INFORMATION

Surveillance des déformations

Déroulement des travaux

Excavation du 2^e étage avec sections partielles

Déroulement des travaux

Longrine de support de la voûte et du pont roulant de chantier

Armatures de la voûte

Coffrage de la voûte

Vue d'ensemble

Tuyau de bétonnage à l'intérieur du coffrage

Voûte et longrine après bétonnage

Déroulement des travaux

Approfondissement simultanément au bétonnage

Déroulement des travaux

Encore deux étapes d'excavation!

Conclusion à la fin de l'excavation:

Investir dans l'intelligence rapporte! Economies en soutènement: 6 fois les coûts des reconnaissances et des calculs d'ingénieur.

