

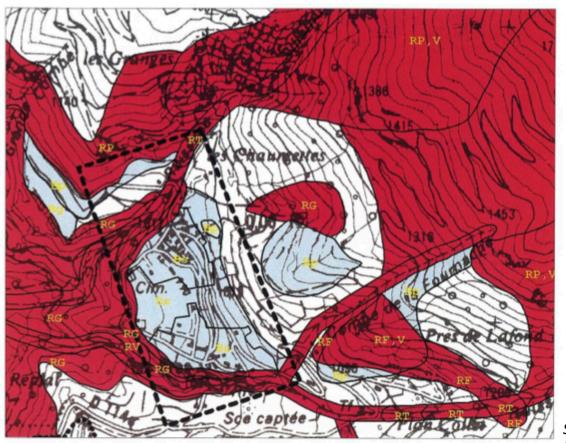
La place de l'expertise dans l'évaluation de l'aléa « éboulement rocheux »

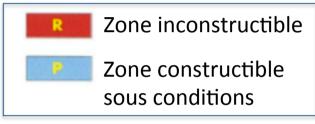
Exemple d'une expérimentation originale

Adeline DELONCA*, doctorante

Yann GUNZBURGER
Thierry VERDEL

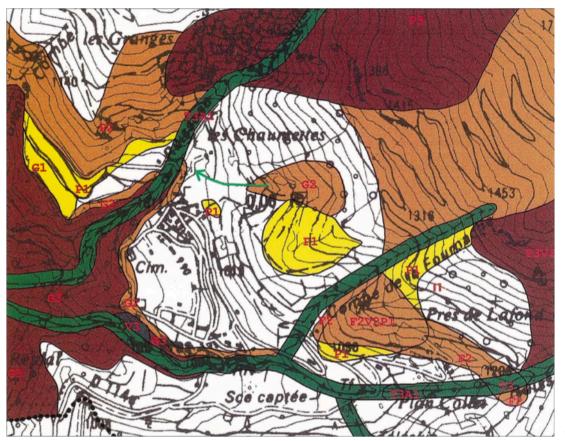
^{*} adeline.delonca@mines.inpl-nancy.fr

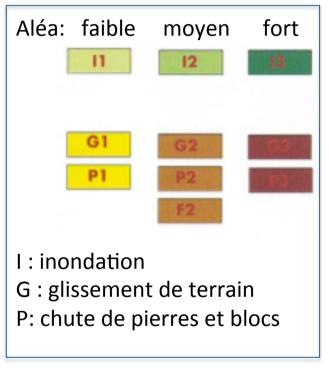

 Éboulements rocheux = source de danger pour les infrastructures de transport et les zones habitées



- Quasi-absence de signes précurseurs à un événement
- Importance de l'identification des zones dangereuses

• En France, zonage règlementaire : Plan de Prévention des Risques (PPR)

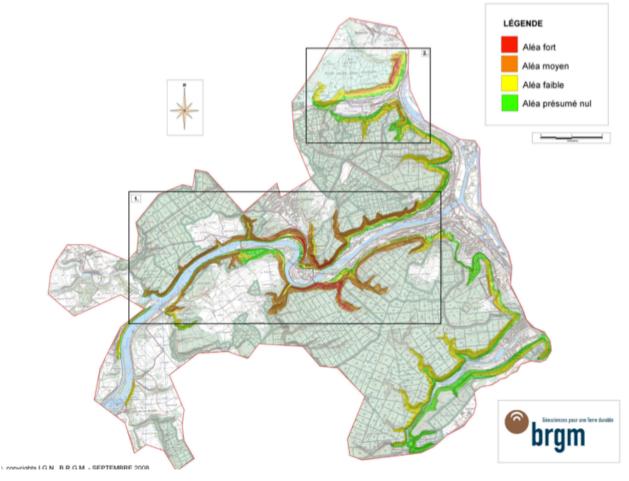




Oris-en-Rattier (38)

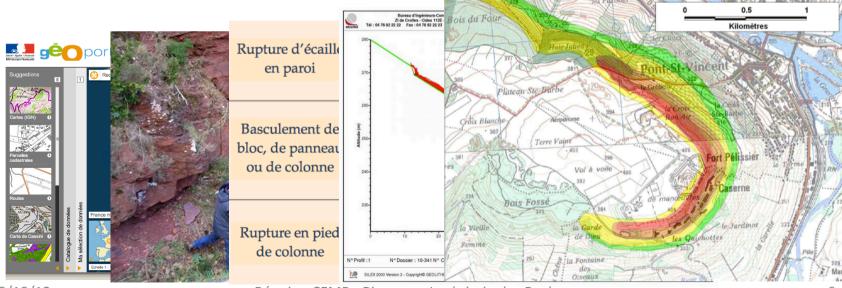
Source : Guide méthodologique LPC – Plan de Prévention des Risques Naturels PPR

• En France, zonage règlementaire : Plan de Prévention des Risques (PPR) ... basés fortement sur la carte d'aléa



Oris-en-Rattier (38)

Source : Guide méthodologique LPC – Plan de Prévention des Risques Naturels PPR


• Etudes spécifiques d'aléa lié aux éboulements rocheux

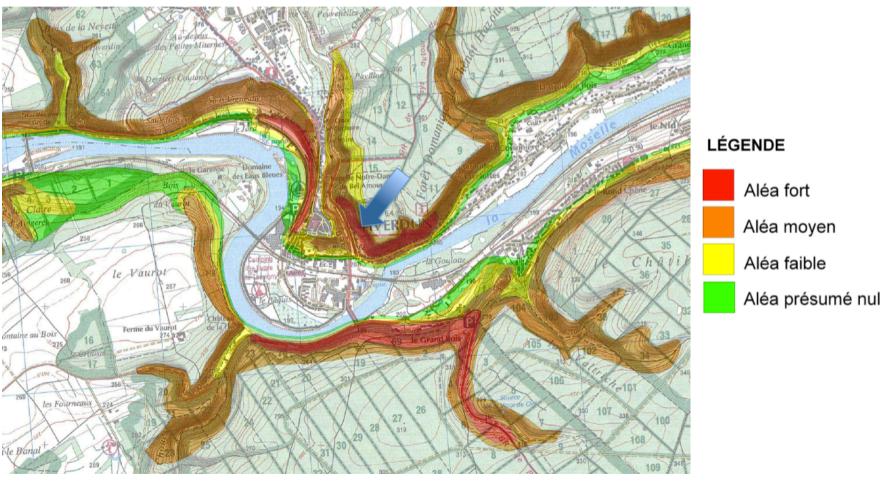
Liverdun-Frouard (54)

Source : Aléa chute de bloc sur le territoire départemental de Meurthe et Moselle (54) — Dossier BRGMRP-56628-FR

- Méthodologie type de l'évaluation de l'aléa:
 - 1. Recherches documentaires et historiques
 - 2. Visite sur site : analyser les mécanismes mis en jeu
 - 3. Prévoir l'évolution future du site
 - 4. Analyse trajectographique Aléa de propagation
 - 5. Proposition d'un zonage de l'aléa Préconisations

Aléa de départ

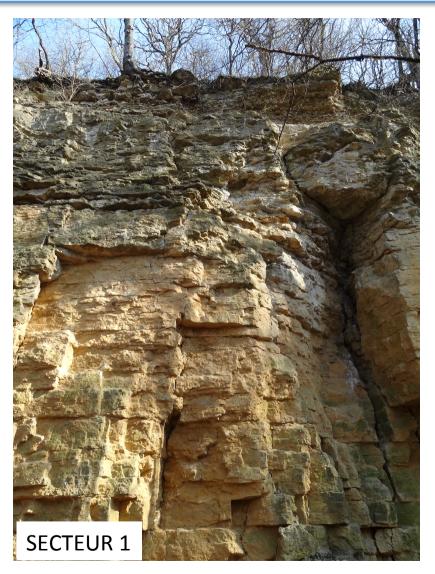
- Méthodologie type d'élaboration de ces cartes :
 - 1. Recherches documentaires et historiques
 - Visite sur site : analyser les mécanismes mis en jeu
 - 3 Prévoir l'évolution future du site


Aléa de départ

- 4. Analyse trajectographique Aléa de propagation
- 5. Proposition d'un zonage de l'aléa Préconisations
- Elaboration des cartes d'aléa dans un temps limité

Place de l'expertise dans l'évaluation de l'aléa « éboulements rocheux »

• 1 site



• 1 site



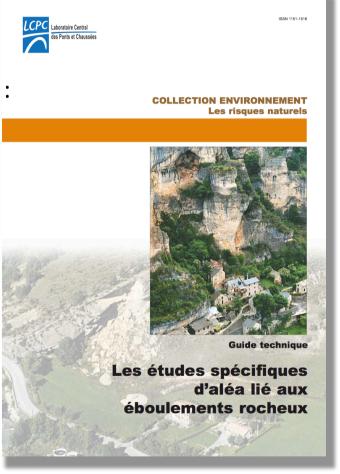
18/10/12

Réunion CFMR - Risque en Ingénierie des Roches



18/10/12

Réunion CFMR - Risque en Ingénierie des Roches



- 1 site
 - > 3 secteurs
 - ▶2 méthodes d'évaluation de l'aléa
 - Méthode LPC (« Laboratoire des Ponts et Chaussées »)
 - Méthode SMR (Slope Mass Rating)
 - ➤... Ainsi que l'évaluation a priori du niveau d'aléa

Méthode LPC

- Evaluation de l'aléa de départ :
 - 1. Caractérisation des instabilités potentielles :
 - Données géomécaniques
 - Données hydrologiques
 - Donnée climatiques
 - Volume mobilisable mis en jeu
 - Processus de rupture
 - Facteurs déterminants
 - 2. Qualification de l'aléa:
 - Probabilité d'occurrence
 - Délai

Méthode LPC

Probabilité d'occurrence

Très élevée (te)	L'occurrence du phénomène est normale. Sa non-occurrence serait exceptionnelle	
Elevée (e)	L'occurrence du phénomène est plus envisageable que sa non- occurrence	
Modérée (m)	L'occurrence du phénomène est équivalente à sa non- occurrence	La probabilité est appréciée en fonction des facteurs déterminants (présence et/ou intensité)
Faible (f)	La non-occurrence du phénomène est plus envisageable que son occurrence	ou mensite,
Très faible (tf)	La non-occurrence du phénomène est normale. Son occurrence serait exceptionnelle	

Délai

Imminent	i	Prise en compte immédiate (le délai se compte en heures, jours, semaines ou mois)
Très court terme	tct	2 ans environ
Court terme	ct	10 ans environ
Moyen terme	mt	De l'ordre de 30-50 ans
Long terme	lt	De l'ordre de 100-150 ans

Facteurs	Favorable à la sta	bilité	Défavorable à la stabilité				
EXEMPLE							
Sismicité	Tout le département est en zone de sismicité 1 (stable)	très faible. Déstab	lisation en cas de séismes.	4 (instable)			
DONNEES GEOMECA	ANIQUES						
Pente du talus	Faible			Verticale à déversante			
Discontinuités	Absentes			Présentes			
Surfaces des discontinuités	Rugueuses			Lisses			
Ouverture des discontinuités	Fermées			Ouvertes			
Remplissage de l'ouverture des discontinuités	Colmatées			Non colmatées			
Orientation des discontinuités critiques	Favorable à la stabilisation Schéma du site :	on du massif	"Favorable" à	la déstabilisation du massif			
DONNEES HYDROLO	OGIQUES ET CLIMATIQUES						
Eau intersticielle	Exposition nulle			Exposition fréquente			
Pluviomètrie / fonte des neiges	Jamais exposé			Exposition plusieurs dizaines de jours par an			
Fortes variations de température / cycle gel-dégel	lamais avassá			Exposition plusieurs dizaines de jours par an			
Végétation	Stabilisante			Déstabilisante			

Méthode LPC – Notre adaptation

Impact des facteurs déterminants sur la stabilité

Evaluation d'un niveau de prédisposition (notion de délai intégrée)

Prédisposition	Echelle
Très élevée (te)	La rupture du ou des bloc(s) va avoir lieu. Qu'elle n'ait pas lieu serait exceptionnel
Elevée (e)	La rupture du ou des bloc(s) est plus envisageable que sa stabilité
Modérée (m)	La rupture du ou des bloc(s) est équivalente à sa stabilité
Faible (f)	La stabilité du ou des bloc(s) est plus envisageable que sa rupture
Très faible (tf)	La stabilité du ou des bloc(s) est normale. Une rupture serait exceptionnelle

Croisement avec l'intensité (volume mobilisable)

Intensité	Quantification de l'intensité
< 0.001 m ³	Très faible
0.001 à 0.01 m ³	Faible
0.01 à 1 m ³	Moyenne
1 à 100 m³	Elevée
> 100 m ³	Très élevée

Méthode LPC – Notre adaptation

• Impact des facteurs déterminants sur la stabilité

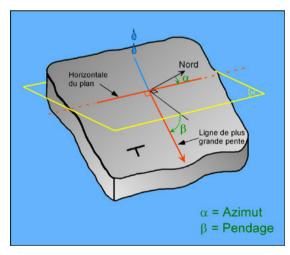
Aléa : Evaluation d'un niveau de prédisposition (notion de délai intégrée)

Prédisposition Intensité	Très faible	Très faible Faible		Elevée	Très élevée
Très faible	Faible	Faible	Faible	Moyenne	Moyenne
Faible	Faible	Faible	Moyenne	Moyenne	Elevée
Moyenne	Faible	Moyenne	Moyenne	Elevée	Elevée
Elevée	Moyenne	Moyenne	Elevée	Elevée	Elevée
Très élevée	Moyenne	Elevée	Elevée	Elevée	Elevée

 0.001 à 0.01 m
 Taible

 0.01 à 1 m³
 Moyenne

 1 à 100 m³
 Elevée


 > 100 m³
 Très élevée

Méthode SMR

- SMR = RMR + (F1.F2.F3) + F4
- RMR:
 - Résistance à la compression Rc
 - Espacement moyen des discontinuités
 - RQD
 - Conditions des discontinuités (surface des joints rugosité, altération)
 - Eau souterraine (venue d'eau)

Méthode SMR

- SMR = RMR + (F1.F2.F3) + F4
 - F1 : mesure la différence d'azimut entre la pente et les discontinuités (αj - αs)
 - F2 : pendage des discontinuités (βj)
 - F3 : mesure la différence d'angle entre le pendage des discontinuités et celui de la pente (βj-βs)
 - F4 : prends en compte la méthode d'excavation

αs : azimut de la pente

αj : azimut des discontinuités critiques

8s : pendage de la pente

Bj : pendage des discontinuités critiques

• SMR:

Valeur du SMR	Qualification de la sensibilité à la stabilité du site
SMR ≤ 20	Très défavorable à la stabilité du site
20 < SMR ≤ 40	Défavorable à la stabilité du site
40 < SMR <u><</u> 60	Moyennement favorable à la stabilité du site
60 < SMR <u><</u> 80	Favorable à la stabilité du site
80 < SMR	Très favorable à la stabilité du site

Activité:

Activité	Qualification du massif
Traces morphologiques estompées Pas d'altération du massif	Dormant
Traces morphologiques évoluées Altération superficielle	Inactif ou peu actif
Traces morphologiques fraîches Altération profonde	Frais
Traces morphologiques Altération active	Actif

• SMR:

SIVIIV.							
	/aleur du SMR						
Probabilité	d'occurre	n a a .	la stabilité du site cabilité du site				
SMR Activité	Très favorable	Favorable	Moyen	Défavorable	Très défavorable		
Dormant	Négligeable	Faible	Faible	Moyenne	Moyenne		
Inactif ou peu actif	Faible	Faible	Moyenne	Moyenne	Elevée		
Frais	Faible	Moyenne	Moyenne	Elevée	Elevée		
Actif	Moyenne	Moyenne	Elevée	Elevée	Elevée		
I	Traces morphologiques évoluées Altération superficielle Inactif ou peu actif						
Trace	Traces morphologiques fraîches Altération profonde Frais						
	races morpholog Altération activ	·		Actif			
9/10/12	Páu	nion CEMP Pisquo o	n Ingóniario dos Pach	05	72		

• Probabilité d'occurrence :

SMR Activité	Très favorable	Favorable	Moyen	Défavorable	Très défavorable
Dormant	Négligeable	Faible	Faible	Moyenne	Moyenne
Inactif ou peu actif	Faible	Faible	Moyenne	Moyenne	Elevée
Frais	Faible	Moyenne	Moyenne	Elevée	Elevée
Actif	Moyenne	Moyenne	Elevée	Elevée	Elevée

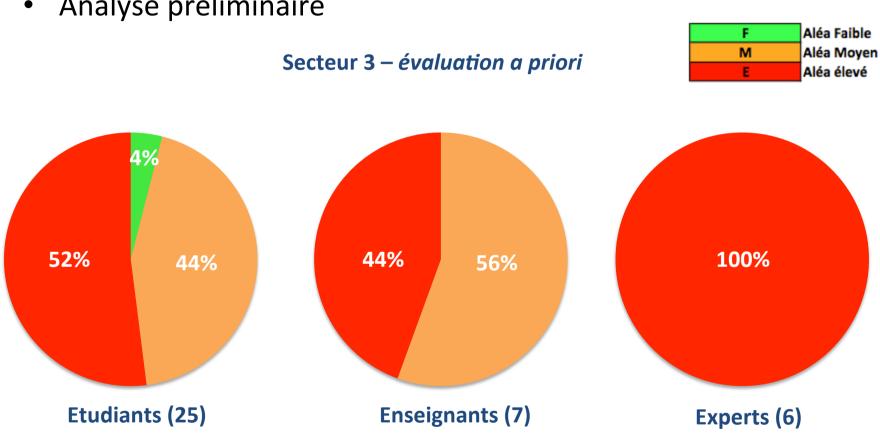
• Intensité:

Volume mobilisable	Qualification de l'intensité
< 10- ³ m ³	Chutes de pierres
10 ⁻³ -1 m ³	Chutes de blocs
> 1 m ³	Eboulements
> 10 m ³	Eboulements majeurs

• Probabilité d'occurrence :

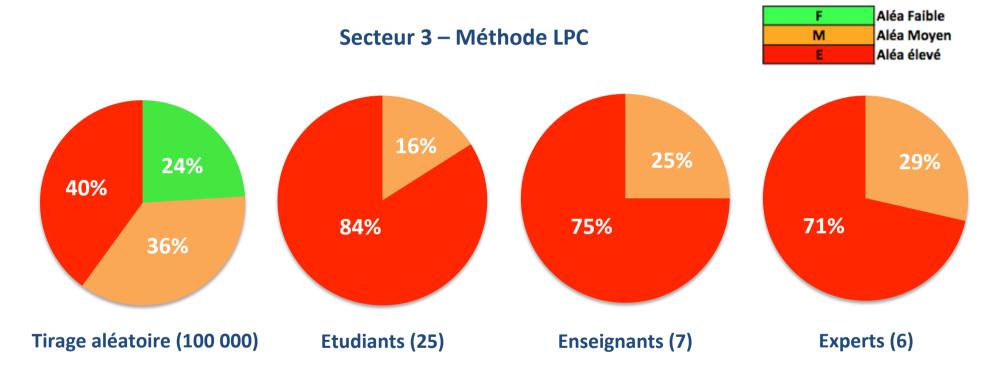
ΙΛΙάαιΝ	Très orable	Favorable		Moyen	1	Défavorable	Très défavorable
Probabilité d'occurrence Intensité	Nég	gligeable		Faible		Moyenne	Elevée
Chute de pierres		Nul		Faible		Faible	Moyenne
Chute de blocs	ı	Faible		Faible		Moyenne	Moyenne
Eboulements	ı	Faible	N	Moyenne		Moyenne	Elevée
Eboulements majeurs	М	oyenne	N	Moyenne		Elevée	Elevée

Volume mobilisable	Qualification de l'intensité
< 10- ³ m ³	Chutes de pierres
10 ⁻³ -1 m ³	Chutes de blocs
> 1 m ³	Eboulements
> 10 m ³	Eboulements majeurs

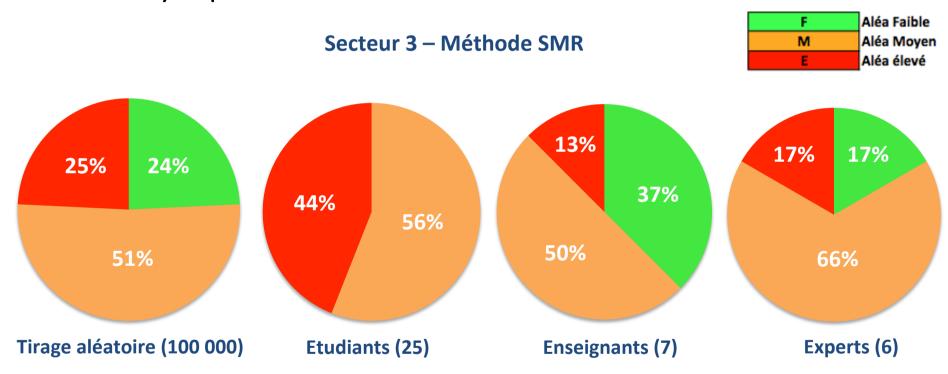

- 1 site
 - ≥ 3 secteurs
 - ▶2 méthodes d'évaluation de l'aléa
 - Méthode LPC (« Laboratoire des Ponts et Chaussées »)
 - Méthode SMR (Slope Mass Rating)
 - ➤... Ainsi que l'évaluation a priori du niveau d'aléa
 - ≥3 niveau d'expertise
 - 25 étudiants en géoingénierie
 - 7 enseignants-chercheurs
 - 6 experts confirmés (CETE, BRGM, SNCF, INERIS)

18/10/12

Réunion CFMR - Risque en Ingénierie des Roches


Analyse préliminaire

Plus grande dispersion chez les étudiants et les enseignants


Analyse préliminaire

Forte ressemblance dans les résultats

Analyse préliminaire

Plus grande dispersion chez les enseignants et les experts

Aléa nul	1
Aléa faible	2
Aléa moyen	3
Aléa élevé	4

Etudiants	Evaluation <i>a priori</i>	Méthode LPC	Méthode SMR
Moyenne	3,48	3,84	3,44
Ecart-type	0,59	0,37	0,51

Enseignants	Evaluation <i>a priori</i>	Méthode LPC	Méthode SMR
Moyenne	3,56	3,67	2,8
Ecart-type	0,53	0,5	0,63

Experts	Evaluation <i>a priori</i>	Méthode LPC	Méthode SMR
Moyenne	3,57	3,71	3
Ecart-type	0,53	0,49	0,63

Difficile d'évaluer l'influence de la méthode ou du niveau d'expertise

• ANOVA : analyse de la variance - Lecture des résultats

	DF	Sum of Squares	Mean square	F value	P < 5%
Méthode	2	7,317	3,66	8,52	0,00036
Expertise	2	2,645	1,32	3,08	0,0499
Méthode- expertise	4	0,946	0,24	0,55	0,699
Residuals	111	47,648	0,4296		
TOTAL	119	58,556	5,6496		

Secteur 1 – influence de la méthode utilisée et du niveau d'expertise sur l'évaluation de l'aléa

Influence significative du facteur
Influence non significative du facteur
Aucune influence du facteur

• Influence de la méthode utilisée et du niveau d'expertise sur le niveau d'aléa

SECTEUR 1	DF	Sum of Squares	Mean square	F value	F 5%
Méthode	2	7,317	3,66	8,52	0,00036
Expertise	2	2,645	1,32	3,08	0,0499
Méthode- expertise	4	0,946	0,24	0,55	0,699
Residuals	111	47,648	0,4296		
TOTAL	119	58,556	5,6496		

M	ET	H()E
FX	PF	R	ΓI	SF

SECTEUR 2	DF	Sum of Squares	Mean square	F value	F 5%
Méthode	2	5,463	2,73	8,62	0,00033
Expertise	2	1,174	0,59	1,85	0,161
Méthode- expertise	4	1,834	0,46	1,45	0,223
Residuals	114	36,113	0,317		
TOTAL	122	44,584	4,097		

METHODE EXPERTISE Influence de la méthode utilisée et du niveau d'expertise sur le niveau d'aléa

SECTEUR 3	DF	Sum of Squares	Mean square	F value	F 5%
Méthode	2	6,455	3,23	12,11	1,70e ⁻⁵
Expertise	2	1,694	0,85	3,176	0,0455
Méthode- expertise	4	2,204	0,551	2,067	0,08975
Residuals	114	30,395	0,267		
TOTAL	122	40,748	4,898		

- 1. Influence significative de la méthode choisie
- 2. Influence non significative du niveau d'expertise

Conclusion et discussion

- Evaluation a priori : dispersion importante des résultats pour les étudiants, moyenne pour les enseignants et faible à nulle pour les experts
- Méthode LPC : résultats semblables quelque soit le niveau d'expertise
- Méthode SMR: dispersion importante des résultats pour les enseignants et les experts: importance du volume choisi et de l'évaluation de l'activité du massif choisie
- Influence significative de la méthode
- Influence non significative du niveau d'expertise

Conclusion et discussion

- La méthode LPC « guide » la pensée : méthode utilisable par des non initiés, même si c'est une méthode qualitative
- Méthode SMR : trop grande sensibilité au volume, et à l'évaluation de l'activité du massif
- Plus value de l'expert : il ne surestime pas les paramètres utilisés et donc le niveau d'aléa
- Pour un site complexe, le niveau d'expertise a t'il une influence aussi peu significative ?

