

Simulation numérique hybride, continue/discontinue, de l'interaction entre explosif et massif fracturé

Le projet HSBM (HSBM: Hybrid Stress Blast Model)

Projet de développement piloté depuis 2001 par un consortium de compagnies minières, de fournisseurs d'explosifs et de matériel

Construction d'un simulateur numérique du processus d'abattage à l'explosif: « Blo-up »

Version 2 en phase de validation

Les sponsors HSBM

de Beers,

Debswana Diamond Company,

Anglo American,

Codelco,

LKAB,

Sandvik Mining and Construction,

Dyno Nobel Asia Pacific,

Rio Tinto,

African Explosives Limited

Projet réalisé en collaboration avec:

Imperial College, Londres

Université de Cambridge

Université du Queensland (Australie)

Blo-up

- Qu'est ce que Blo-up ?
- Quelles informations utilise-t-il ?
- Quels résultats produit-il ?
- Sur quelles bases / hypothèses est-il construit ?

Qu'est ce que Blo-up?

Blo-Up utilise une combinaison de techniques discrètes et continues pour simuler le tir : détonation, propagation dynamique, fragmentation, formation du marin.

De quelles informations part-on?

Explosif

Diamètre de forage(s)

Position et séquence d'amorçage des détonateurs

Schéma de tir, géométrie de la roche

Champ de fracturation naturelle

Propriétés des joints

Quels résultats sont obtenus ?

Fracturation induite,

Endommagement,

ITASCA

Pression dans le(s) forage(s),

Distribution des tailles de blocks,

Vitesses (vibrations, et projections),

Position des matériaux abattus,

Contraintes et déformations,

En fonction du temps, dans l'espace

Bases du développement

Représentation des sondages Modèle d'explosif Représentation de la masse rocheuse Conditions aux limites Propriétés de la roche Modèle d'écoulement des gaz

Le sondage et le champ proche

Milieu continu axisymétrique:

•Bonne représentation de la rupture en compression

•Obtention de la pression d'équilibre (entre gaz explosifs et roche)

La zone continue fait 2,5 fois le rayon du forage.

L'explosif: simulé un code séparé, Vixen

- Mélanges hétérogènes
- La vitesse de détonation dépend du confinement et du diamètre
- Réaction incomplète
- Front courbe
- Vixen (2009) fournit à Blo-up:
- •la vitesse de détonation,
- •les paramètres de l'équation d'état,
- •le taux de réaction final,
- •la densité initiale et
- •un état de référence

L'explosif:

Blo-up utilise un algorithme de réaction programmée (testé en comparaison avec une approche de simulation numérique directe)

Taux de réaction

La roche en champ proche

Matériau de Mohr-Coulomb, couplé aux produits de réaction représentés par l'équation d'état de Williamsburg:

- -Augmentation de pression dans la chambre
- expansion du matériau de champ proche
- nouvelle contrainte isotrope dans la chambre

La masse rocheuse

Modèle granulaire 3D simplifié
Basé sur la méthode des éléments distincts
Prend en compte les degrés de liberté en translation uniquement – mais un "bloc" de particules peut tourner!

•Les liens entre particules sont élastiques – plastiques en compression/traction

La masse rocheuse

Module d'Young Coefficient de Poisson Masse volumique RC, Résistance en Compression simple Résistance en traction Angle de frottement Coefficient d'amortissement

 $K_{Ic} = \sigma'_t \sqrt{\pi \alpha R}$

ITASCA

Compatible avec la mécanique de la rupture

La masse rocheuse

Le réseau de fractures est représenté de façon explicite par des liaisons particulières, qui agissent dans les directions normales et parallèles aux fractures

Conditions aux limites

•Libres (*réflexions*)

Absorbantes ou semi-absorbantes (masse rocheuse « continue » ou avec contraste de propriétés)
« flexibles » (limite entre masse rocheuse intacte et roche déjà fracturée – en souterrain)

Modèle de gaz

- •Une fois la détonation complète, le sondage est rempli de gaz à haute pression. La roche est imperméable au gaz, au départ
 •Rapidement, des fractures radiales se propagent et créent des
- chemins d'écoulement pour le gaz
- •L'écoulement des gaz est simulé par une méthode
- d'homogénéisation sur les « micro-cracks »
- •Les gaz exercent une pression sur les blocs de matériau, contribuant
- à la vitesse de projection

Validation: petite échelle

Expérience menée à l'université de Lulea

Validation: petite échelle

Italo Onederra, University of Queensland

University of Leoben (Reichholf 2003)

ITASCA

Validation: effet des joints

CFGI-CFMR-GFEE, 15 mars 2012

Validation: "grande" échelle

Steve Iverson etBill Hustrulid

University of Queensland

Merci pour votre attention

CFGI-CFMR-GFEE, 15 mars 2012