Etude expérimentale des déformations par dessiccation des argilites de Tournemire

S.Hédan^a, A-L. Fauchille, V.Valle^b, P.Cosenza^a, P.Dudoignon^a, J.Cabrera^c, C.Laforest^a

^a : Université de POITIERS, Laboratoire HydrASA, UMR6269, ENSIP

^b : Université de POITIERS, Institut PPRIME, UPR3346

^c DEI-SARG, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses

INTRODUCTION

Fissure ouverte en décembre 2010 (gal.Est 96)

Excavation des galeries

- \rightarrow La roche est en contact avec l'air : humidité, température
- \rightarrow Apparition de fractures de dessiccation
- ouvertes en hiver et fermées en été
- → Fort couplage hygro-mécanique

Pour étudier la dessiccation des argilites en laboratoire : Température – Humidité relative

Corrélation d'images numériques (CIN)

MECANIQUE Suivi temporel des déformations surfaciques **PETROGRAPHIE** Lien entre les déformations et les hétérogénéités structurales

I. Principe de la manipulation

Sollicitation thermique

Chargement en température par paliers de 40,50,80,105,150,200℃

<u>Echantillons</u> dans une étuve à paroi vitrée plane

<u>Corrélation d'images</u> <u>numériques</u> Suivi temporel des déformations (1 image par minute)

caméras CMOS µEye 1,2 Mp 1280x1024 pixels²

étuve

II. La méthode de corrélation d'images numériques 1.Objectif

- Conf. M. BORNERT, séance CFMR du 10/06/2010
- Comparer deux images (états t_o et t) pour en déduire les champs de déplacement grâce au logiciel CorrelTRASSE©

Quantification précise et spatialisée des **déplacements/déformations** d'un échantillon

Chaque image est découpée en N zones d'études de 16x16 pixels²
 1 image=1280x1024 pixels²

Mouchetis (sable d<100µm)

champ d'analyse=936x840 pixels²

II. La méthode de corrélation d'images numériques2. Calcul des déplacements et des déformations

• Les déplacements Ux et Uy

III. Les résultats en mécanique1. Les échantillons utilisés

- 4 échantillons
- 3 directions des plans de stratification : 135°, 180° et 90°

Forages	GSN	/135	GSM180	FD90
Profondeur à partir de la galerie (m)	3,3	3,5	3,8	2,2
Longueur (mm)	200	70	70	70
T(°C)	40-200	50-200	50-200	50-150
Temps cumulé du chauffage (h)	5,0	8,0	8,0	6,0

III. Les résultats en mécanique2. Sollicitation thermique de l'échantillon GSM135 1

GSM135 1 : 1 carotte Ø78 mm et L=200mm Mesures de ε + lames minces après dessiccation

III. Les résultats en mécanique 2. Sollicitation thermique de l'échantillon GSM135 Champ de déformation principale ε_1 ; $\varepsilon_2 \approx 0$ X_2 0 min 40°C 72 mi 80°C 129 min 105°C

191 min

150°C

245 min

200°C

6.02

0.01

Fissure

CONCLUSION

- Début sollicitation thermique $(40^{\circ}C) \rightarrow$ Localisation (concentration) des déformations
- Apparition de fissures macroscopiques
- Fissures suivent les hétérogénéités
- « *Fermeture* » des fissures à 150℃

III. Les résultats en mécanique

3. Sollicitation thermique de l'échantillon GSM135 2

GSM135 2 : 1 carotte découpée en 3 :

- 1 \emptyset 78 mm et L=70mm \implies Mesures de ε + lames minces après dessiccation
- 1 Ø78 mm et L=70mm) Mesure de la masse
- 1 Ø78 mm et L=50mm => Lames minces avant dessiccation

III. Les résultats en mécanique

4. Sollicitation thermique de l'échantillon GSM180

GSM180 : 1 carotte découpée en 3 :

- 1 \emptyset 86 mm et L=70mm \implies Mesures de ε + lames minces après dessiccation
- 1 Ø86 mm et L=70mm and Mesure de la masse
- 1 Ø86 mm et L=43mm
- Lames minces avant dessiccation

Champ d'analyse de la caméra

III. Les résultats 4. Sollicitation thermique de l'échantillon GSM180 Champ de déformation principale ε_1 ; $\varepsilon_2 \approx 0$ « Réseaux secondaires » ?? X_2 1**80°** 0 min 74,2 m 50°C 156 min CONCLUSION 105°C Début sollicitation thermique (50℃) 259 min → Localisation (concentration) des déformations 150°C 378 min • Apparition de fissures macroscopiques 6.02 **Fissure** 200°C 480 min Fissures suivent la stratification • « *Fermeture* » des fissures $\approx 150^{\circ}$ 6.01 • Présence de « réseaux secondaires » ??

180°

180°

 X_1

III. Les résultats en mécanique

5. Sollicitation thermique de l'échantillon FD90

FD90 : 1 carotte découpée en 5 :

- 1 Ø86 mm et L=70mm blames minces (LM) avant dessiccation
- 1 Ø86 mm et L=70mm \implies Mesures de ϵ jusqu'à 50°C + LM après dessiccation
- 1 Ø86 mm et L=70mm → Mesures de ε jusqu'à 105℃ + LM après dessiccation
- 1 Ø86 mm et L=70mm → Mesures de ε jusqu'à 150°C + LM après dessiccation
- 1 Ø86 mm et L=45mm mesures de teneur en eau

Champ d'analyse de la caméra

Pourquoi les fissures se referment-elles ? ⇒ Proposition d'une hypothèse

III. Les résultats en mécanique 6. Résumé

N°Essai	Stratification	Découpage carotte	Palier thermique/durée	w%	Conclusions
GSM 135 1 : 3.30-3.50m (27/10/09)	135°	Non	1h→40℃ 1h→80℃ 1h→105℃ 1h→150℃ 1h→200℃	/ / / 2.7	 Méthode d'extensométrie optique (CIN) bien adaptée pour prédire l'apparition des fissures (ouverture des fissures ≈ 80 µm) Dès le début des essais :
GSM 135 2 : 3.50-3.70m (27/10/09)	135°	3	2h→50℃ 2h→105℃ 2h→150℃ 2h→200℃	4,3 3,6 2,9 1,0	Localisation (concentration) des déformations Ces zones de concentration de déformations sont des précurseurs des fissures macroscopiques
GSM 180 : 3.80-4.00m (06/11/09)	180°	3	2h→50℃ 2h→105℃ 2h→150℃ 2h→200℃	3,6 3,2 2,6 0,8	 Fissures suivent la stratification Présence de « réseaux secondaires »?
FD90 : 2.00- 2.40m (07/12/10)	90°	5	2h→50℃ 2h→105℃ 2h→150℃	2 1,8 1,4	► « Fermeture » des fissures ≈150°C : dilatation thermique ? Dépassement de la limite de retrait ?

IV. Les résultats en pétrographie1. Au microscope optique

Clichés photographiques en MO en lumière naturelle de l'échantillon **GSM135 2 chauffé à 200°C**, grossissement **x4**

Impact des carbonates ? des pyrites ?

Orientation de la stratification

Clichés photographiques en MO en lumière naturelle de l'échantillon **GSM135 1 chauffé à 200°C**, grossissement **x40**

Orientation de la stratification

IV. Les résultats en pétrographie2. Au microscope électronique à balayage

Cliché photographique de l'échantillon GSM135 1 par M.E.B., observations en mode électrons rétrodiffusés (BEIC) **x50**

Cliché photographique de l'échantillon GSM135 1 par M.E.B., observations en mode électrons rétrodiffusés (BEIC) **x800**

La pyrite oriente t-elle la propagation des fissures de dessiccation ?

Cliché photographique de l'échantillon GSM135 1 par M.E.B., observations en mode électrons rétrodiffusés (BEIC) **x250** Dessiccation grâce à un chauffage par paliers de T°

MECANIQUE

Méthode CIN

Champs de déformation

- Localisation des zones de déformation
- Prédiction de la localisation des fissures

 Localisation des hétérogénéités minéralogiques (carbonates et pyrites) autour de certaines fissures

Merci de votre attention...

Contacts :

stephen.hedan@univ-poitiers.fr philippe.cosenza@univ-poitiers.fr anne.laure.fauchille@univ-poitiers.fr

Echantillon GSM135 2

20℃ et t=0 min

50℃ et t=100 min

105℃ et t=200 min

150℃ et t=378 min

