

Mine by experiment performed in the Callovo-Oxfordian claystone at the Meuse Haute Marne Underground Research Laboratory (France)

G. Armand, A. Noiret, M. Cruchaudet N. Conil,

12th ISRM International Congress on Rock Mechanics October 18-21, 2011 Beijing

Meuse/Haute-Marne underground research laboratory

> ANDRA (French national radioactive waste management agency) started in 2000 to build an underground research laboratory in East of France to study feasibility of deep geological repository in a claystone layer

ANDRA

Objectives in geomechanic:

- To study hydro mechanical behavior of claystone during drift and shaft excavation (short and long term behavior)
 - □ Impact of digging and support method
 - □ Orientation of drift
-)) To characterize the Excavation Damaged Zone (EDZ)
-) To characterize the Thermo Hydro Mechanical behavior
- » To perform sealing experiments

In situ measurements will be compared with numerical modeling and will be useful to validate and develop HM model

Rock properties of the COX

Callovo Oxfordian claystone properties at the 490 m level:

-) Mineralogy:
 - □ 50-55% clay minerals
 - □ 20-25% carbonate
 - □ around 25% quartz silts
-) Very low permeability (5.10⁻²⁰ m²)
-)) Short-term behavior, triaxial test: non linear and post-peak depending on σ_3
- Dong term behavior, uniaxial creep test:
 - Creep strain rate increases nonlinearly with the applied deviatoric stress
 - □ Creep rate (Andra 2005):
 - 4.10⁻¹² < creep rate <1.60.10⁻¹² (test duration 1 to 3 years)
 - Long-term behavior according to the modified Lemaître's model

Axial displacement

Rock parameter	Ind.	Value
Bulk specific gravity	ρ	2.39 g/cm ³
Porosity	n	$16 \pm 2\%$
Young modulus	\mathbf{E}_{\perp}	$4000 \pm 1470 \text{ MPa}$
	$\overline{E_{//}}/E_{\perp}$	1.2 to 1.5
Poisson Ratio	V	0.29 ± 0.05
Uniaxial compressive strength	UCS	21±6.8 MPa
Hoek & Brown criteria		
S		0.43
m		2.5
σ_{c} (MPa)		33.5
Intrinsic permeability	k	5×10 ⁻²⁰ m ²
Water content	W	7.2 ± 1.4 %

Meuse/Haute-Marne underground research laboratory

A huge program of experiments is planned to characterize the response of the rock to different drift construction methods

Mine by experiments around the drift GCS

A mine by experiment is state-of-the-art project to characterize excavation induced damage and determine relationships governing the behavior of a rock mass around an underground opening

- Measurements emplaced before the
 - - □ Deflectometer
 - □ Pore pressure measurement
- Measurements performed during the excavation work
 - □ Convergence & extensometer
 - Load & deformation of the support
 - □ Structural analysis of the front
- » EDZ Characterization
 - □ Permeability measurement
 - Resin injection to characterize fractures aperture
 - □ Velocity survey

≈ 200 sensors

DRD/MFS/11-0206 © Andra

AGENCE NATIONALE POUR LA GESTION DES DÉCHETS RADIOACTIFS

12th ISRM International Congress on Rock Mechanics October 18-21, 2011 Beijing

CANDRA La matrise des déchets rodioactifs

Drift concept and excavation methods

This drift is called "soft concept gallery" (GCS, *Galerie de Conception Souple*)

Drift support is composed of:

- 12 radial rockbolts (3 m long),
- □ 18 cm of fiber reinforced shotcrete,
- 12 yieldable concrete wedges (hiDcon[®])
- At the front face, 13 fiber rock bolts of 12 m long placed every 6 m.

Yieldable concrete wedges is flexible in order to let developing long term tunnel closure (compressive strength $4 \pm 0,5$ MPa, max strain 40%)

12th ISRM International Congress on Rock Mechanics October 18-21, 2011 Beijing

Drift concept and excavation methods

Excavation cycle:

- Excavation with roadheader, muck removal
- First layer of shotcrete (0,03 m thickness),
- Radial bolts
- Installation of the concrete wedge and shotcrete on counter vault (0,18 m thickness) :
- Filling of the counter vault
- Installation of the concrete wedge on vault and shotcrete layers (0,18 m thickness)
- New cycle...

Some numbers...

- Beginning: 20/01/10,
- GCS Type: 04/05/10 (PM13)
- Ending: 14/10/2010 (PM 63)
- Average speed 2.05 m/week
- Excavation/muck removal steps represent 15% of excavation cycles

12th ISRM International Congress on Rock Mechanics October 18-21, 2011 Beijing

Geological survey: induced fractures

Convergence measurements (drift // σ_H)

 σ_{H} . Convergence depends of the drift orientation

D Highest convergence is observed where the extend of induced fractures is larger

Support behavior

Support monitoring is composed of 2 instrumented sections dedicated to the study of the compressible wedge behavior (PM 29.5 and 47.5)

Support behavior

- Decision Decision
- Maximum displacement and load are measured in the vertical plane
- Results consistent with convergence measurements
- Plastic behavior of the wedge, the maximum crushing reaches 13.5% (crushing capacity of 40%)

DRD/MFS/11-0206

© Andra

Location of the boreholes network

- 19 boreholes (mine by test et SMR)
 - 8 extensometers
 - 3 inclinometers
 - 8 multipacker systems

Horizontal radial displacement

) Extensometer drilled horizontal from the GAT to the GCS and the last anchor (01) is nearly at the sidewall of the GCS

OHZ1501 DF0 01 à 30.0 m (d=-0,1m/PM 17,3)

- OHZ1501 DF0 02 à 29,1 m (d=0,8 m/PM 17,3)
- OHZ1501 DF0 03 à 28,1 m (d=1,8m/PM 17,3)
- OHZ1501 DF0 04 à 26,6 m (d=3,3 m/PM 17,4)
- OHZ1501 DF0 05 à 25,1 m (d=4.8 m/PM 17.4)
- OHZ1501 DF0 06 à 24,1 m (d=5,8m/PM 17,4)
- OHZ1501 DF0 07 à 19,1 m (d=10,8m/PM 17,4)
- OHZ1501 DF0 08 à 15,1 m (d=14,8m/PM 17,4)
- OHZ1501 DF0 09 à 8,1 m (d=21,8m/PM 17,5)
- OHZ1501 DF0 10 à 5,1 m (d=24,8m/PM 17,5)

---- PM

)) Steps of excavation are visible:

- \Box 2 spans ahead the front, around 2.4 m
- \Box 7 spans beyond the front face, around 8.4 m. At this distance, the long-term behavior is predominant on the instantaneous strain
-)) At the front face around 15% of the radial displacement has been already spent

AGENCE NATIONALE POUR LA GESTION DES DÉCHETS RADIOACTIFS © Andra

Comparaison des extensomètres

Comparaison des mesures de déplacement à l'avancement et issues du mine by test: suivi des déconfinements partiel et total.

CANDRA La maîtrise des déchets radioactifs

Axial displacement

D Reverse head extensometer drilled at the axis of the GCS

Pore pressure response (horizontal)

ANDRA ta maîtrise des déchets radiaactifs

Multipacker system located oblique horizontal from the GAT to the GCS

-)) The distance of influence of the excavation is estimated at 20 m
- Dverpressure of several MPa (3 MPa in chambers 4 at 4.8 m from the GCS wall)
 Drop of pressure at the front crossing

Pore pressure response (vertical)

ANDRA

Multipacker system located oblique and rising from the GAT to the GCS

- Dever overpressures in the vertical direction (lorder of magnitude difference with the horizontal plane)
- Drop of pressure is observed near the front face and stabilization as a function of the pore pressure gradient
- Despite the initial stress state is nearly isotropic around the GCS drift, the pore pressure response is anisotropic

Conclusions & perspectives

Horizontal and vertical extensions of fractures are consistent with previous observations realized at -490 m in drift excavated in the same direction (σ_H)

Mechanical response:

- · Horizontal convergences are higher than the vertical ones (ratio \approx 2, consistent with location of fractures)
- At the front face, the normalized wall displacement is around 15%
- The mechanical response is detected at 10 m ahead the front and 2.4 m for the radial displacements

Hydraulic response:

- In all directions, pore pressures increase ahead the front face and drop after
- Despite the initial stress state is nearly isotropic around the GCS drift, the pore pressure response is anisotropic
- A small volumetric strain induces pore pressure change. The hydraulic response to the digging is highlighted up to 20 m ahead the front, showing the importance of hydro-mechanical coupling (M => H).

Conclusions & perspectives

- Further analysis has to be conducted on the hydro mechanical behavior, taking into account the result on the ongoing EDZ characterization in the GCS
 - □ Permeability measurements
 - □ Velocity survey
 - □ Resin injection and over coring to measure fractures aperture

Conclusions & perspectives

ANDRA La maîtrise des déchets rodioactifs

Thank you for your attention

12th ISRM International Congress on Rock Mechanics October 18-21, 2011 Beijing

Fracturation induite par le creusement: galerie // $\sigma_{\rm H}$

Apport de l'expérimentation CDZ

12th ISRM International Congress on Rock Mechanics October 18-21, 2011 Beijing

