

Réunion technique CFMR-AFTES

Paris, 7 avril 2011

Conception et dimensionnement des systèmes de boulonnage

Travaux du Groupe de Travail 30 de l'AFTES

Séance dédiée à la mémoire d'Edouard TINCELIN

Introduction: D. Billaux

Contexte

Le Groupe de Travail a concentré ses travaux sur le boulonnage **radial**

Contexte

Pour les excavations souterraines, la technique du boulonnage est depuis le milieu du XX^{eme} siècle largement diffusée dans le domaine du Génie Civil. Utilisée

- o en soutènement de sécurité, ou
- o comme un élément à part entière du soutènement provisoire ou définitif

cette technologie est souvent indissociable des travaux souterrains, en particulier dans les milieux rocheux

Contexte

Le boulonnage vise deux catégories d'objectifs:

- o éviter un instabilité locale ou globale, et/ou
- limiter les déformations du terrain

Ces deux objectifs se déclinent en deux rôles:

- o rôle de « renforcement »
- o rôle « porteur »

Le rôle de renforcement

« Favoriser la réorganisation des contraintes autour de l'excavation, en augmentant les cisaillements admissibles par le massif »

En augmentant la contrainte mineure: les boulons
« aident » la mobilisation du frottement – fonction de confinement

En fournissant une cohésion supplémentaire –
fonction « d'armature »

Le rôle porteur

Si une partie du massif rocheux est désolidarisée et n'intervient plus dans la stabilité, un boulonnage doit maintenir en place les volumes instables, pour la sécurité du chantier.

Conception et dimensionnement

Quels sont les mécanismes de ruine potentiels?

Milieu « continu » ou fracturé à l'échelle de l'ouvrage ?

Intensité des contraintes (par rapport à la résistance du massif) ?

Association avec d'autres types de soutènement?

Conception et dimensionnement

Choix de représentation des boulons:

- Pression de confinement en paroi
- Amélioration des caractéristiques du massif
- Simulation explicite des boulons

Programme de la séance

Les avancées technologiques du boulonnage : P. Roux

Dimensionnement : primauté des boulons par rapport au béton projeté : *J. Launay*

Les trois données fondamentales : rapport contraintes – résistance intacte, taille des blocs, et qualité des fractures : *Ch. Jassionnesse*

Les recommandations du Groupe de Travail en l'état actuel : *F. Laigle*

