
Digues maritimes en enrochements : la problématique des ressources en matériaux

Plan de l'exposé

- Fonctionnalités des composants d'une digue en enrochements
- 2. Propriétés requises pour les matériaux
- Etapes nécessaires à la qualification d'un gisement
- 4. Aménagements en carrière

Composition d'une digue à talus

Fonctionnalités requises pour la carapace

- Résister aux chargements hydrodynamiques de toute nature
- Dissiper les réflexions des vagues
- Éviter les affouillements en pied
- Satisfaire à certains critères esthétiques
- Propriétés recherchées lors de la mise en place :
- Densité
- Porosité
- Accrochage / enchevêtrement
- Rugosité
- Épaisseur

Fonctionnalités requises pour le filtre

- Contribuer à la dissipation de l'énergie emmagasinée par la carapace (on recherche un écoulement turbulent à travers les vides)
- Empêcher la migration hydraulique des particules fines du noyau et les phénomènes de renard
- Régulation de pression interstitielle
- Résistance pour supporter les charges apportées par la carapace
- Propriétés recherchées lors de la mise en place :
- Densité, perméabilité
- Résistance au cisaillement
- Frottement interne

Fonctionnalités requises pour le noyau

- Réguler la transmission des vagues
- Développer une résistance suffisante pour supporter l'ensemble de la structure
- Avoir une compacité suffisante pour éviter des tassements postérieurs à la construction
- Propriétés recherchées lors de la mise en place :
- Densité,
- Résistance au cisaillement
- Frottement interne, cohésion, dilatance
- Perméabilité
- + pour tous les composants : maintien de ces propriétés dans le temps

Propriétés intrinsèques du matériau (gisement)

- Couleur ↔ *critères esthétiques*
- Densité ↔ stabilité hydraulique
- Absorption d'eau / porosité ↔ résistance à la dégradation
- Discontinuités in-situ taille et forme des blocs
- Degré d'altération ← dégradation
- Résistance à la fragmentation et à l'abrasion ↔ résistance à la dégradation pendant la mise en œuvre puis en service

Essais visant à caractériser un matériau / un gisement

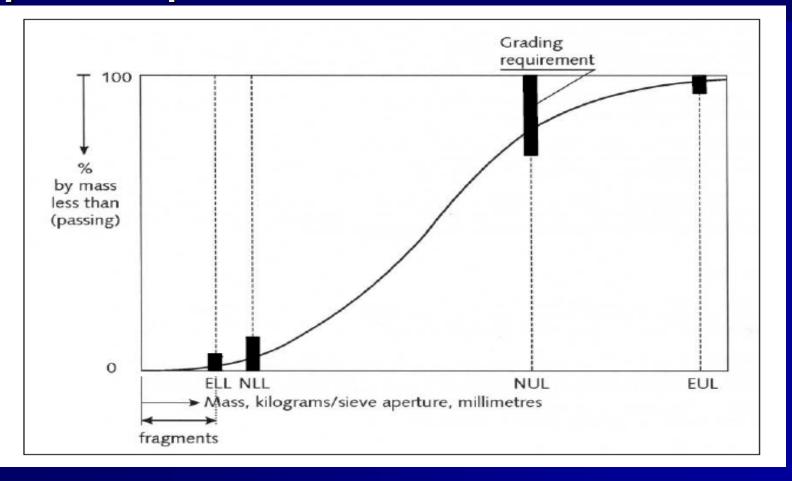
- Analyse minéralogique et pétrographique
- Mesure de densité et d'absorption d'eau (NF EN 1097-6)
- Essai de résistance à la compression simple, Point Load Index
- Résistance à la fragmentation Essai Los Angeles (NF EN 1097-2)
- Résistance à l'usure Essai Micro-Deval (NF EN 1097-1)
- Altérabilité Essai au sulfate de Magnésium (NF EN 1367-2)
- Qualification des fines Essai au bleu de méthylène (NF EN 933-9)

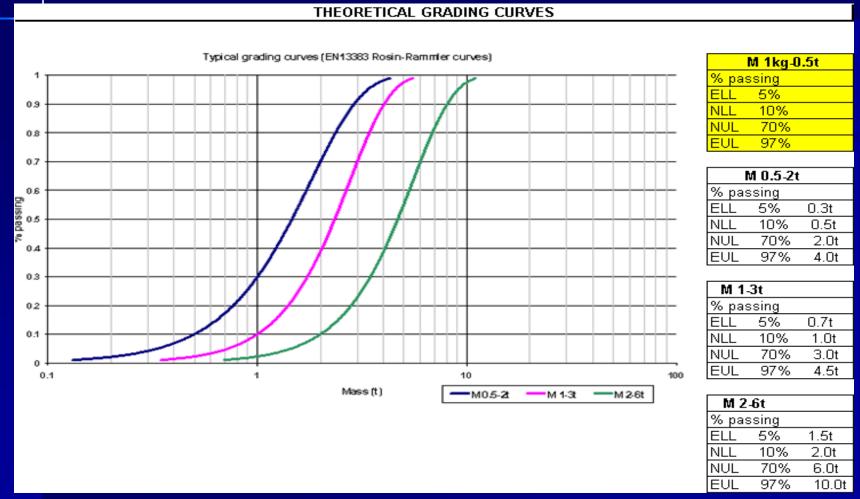
Quality and durability guide (not intended for specification purposes)

	Criteria Reference		Excellent Good Marginal Po			Poor
	CINCIA	Reference				
_	Petrographic evaluation	Trained Petrographer	**	**	**	**
	Mass density, ρ_{rock} (t/m ³)	EN 13383-2:2002	>2.7	2.5-2.7	2.3-2.5	<2.3
	Water absorption (%)	EN 13383-2:2002	< 0.5	0.5-2.0	2.0-6.0	>6.0
	Microporosity/Total porosity (%)	Lienhart (2003)	<2	2 to 6	6 to 20	>20
	Methylene Blue Adsorption (g/100g)	Verhoef (1992)	< 0.4	0.4-0.7	0.7-1.0	>1.0
	Compressive Strength (MPa)	EN 1926:1999	>120	120-80	80-60	<60
	Schmidt impact index (% rebound)	ISRM (1988)	>60	50-60	40-50	<40
Tests	Sonic Velocity (km/s)	EN 14579:2004	>6	4.5-6	3-4.5	<3
	Point Load Strength (MPa)	ISRM (1985)	>8	4-8	1.5-4	<1.5
-aboratory	Fracture toughness (MPa.m ^{1/2})	ISRM (1988)	>1.7	1.0-1.7	0.6-1.0	< 0.6
Labo	Indirect Tensile (Brazilian) Strength (MPa)	ASTM D3967-95a (2004) ISRM (1978)	>10	5-10	2-5	<2
	Los Angeles (% loss)	EN 1097-2:1998	<15	15-25	25-35	>35
	Micro-Deval (% loss)	EN 1097-1:1996	<10	10-20	20-30	>30
	MgSO ₄ Soundness (% loss)	EN 1367	<2	2-10	10-30	>30
	Freeze-thaw (% loss)	EN 13383-2:2002	< 0.5	0.5-1	1.0-2	>2
	Sonic velocity reduced by freeze-thaw (% change) ***	Section 3.8.6	<5	5-15	15-30	>30
	Wet-dry (% loss)	ASTM D5313-04	< 0.5	0.5-1	1.0-2	>2

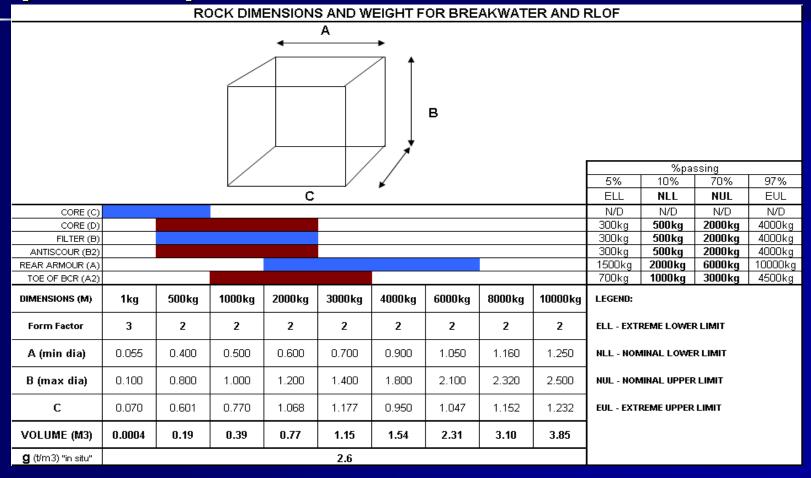
Caractéristiques du matériau idéal

Caractéristiques	Carapace	Filtre	Noyau	
Degré d'altération	Frais ou légèrement altéré			
Espacement des discontinuités	1.00 m +	0.5 m+	0.2 m +	
RQD (%)	80-100	75-100	55-100	
Absorption d'eau (%)	< 2 %	< 2.5 %	< 3 %	
Résistance à la compression simple (MPa)	>100	> 100	> 50	
Densité de la roche (kg/m³)	> 2600	> 2600	> 2000	

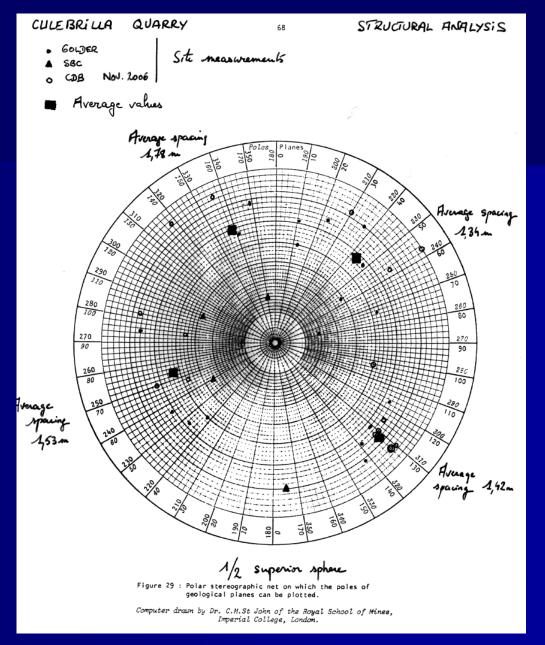

Parfois quelques déconvenues...


Propriétés obtenues lors de la fabrication en carrière

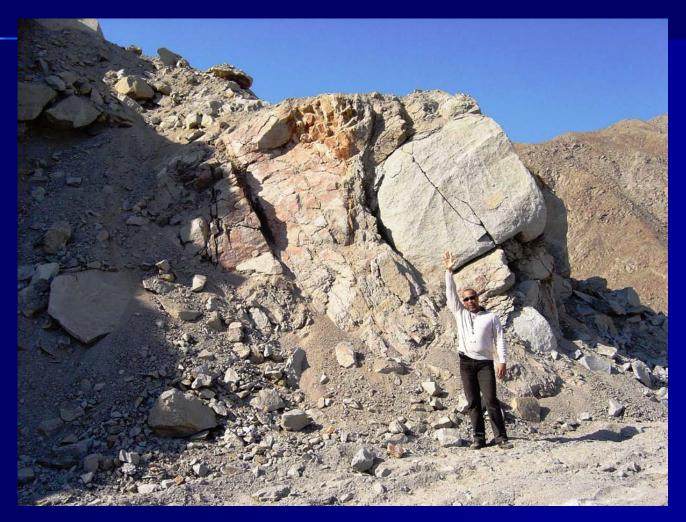
- Intégrité du bloc
- Poids moyen du bloc (W₅₀)
- Granularité (« grading ») (ex. W₈₅/W₁₅)
- Forme du bloc (rapport L/d)
- → Nécessité de modèles prédictifs de la distribution blocométrique in-situ avant et après abattage.


Propriétés obtenues lors de la fabrication en carrière : dimensions et poids requis

Propriétés obtenues lors de la fabrication en carrière : dimensions et poids requis

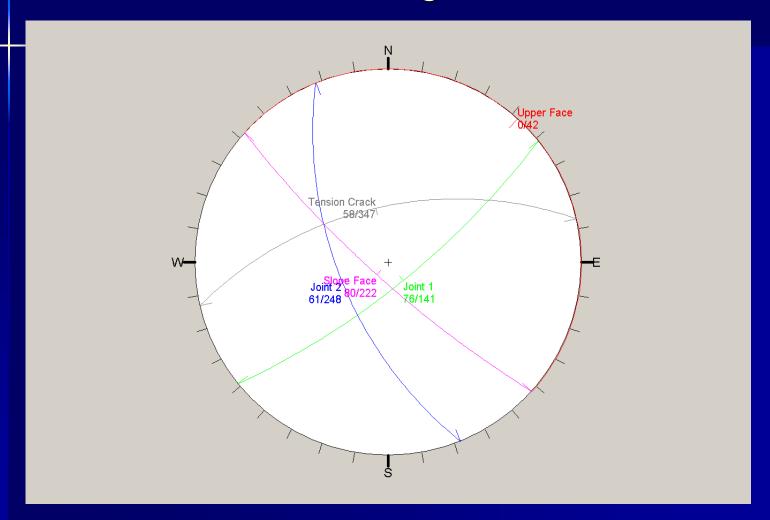


Propriétés obtenues lors de la fabrication en carrière : dimensions et poids requis



Analyse du gisement

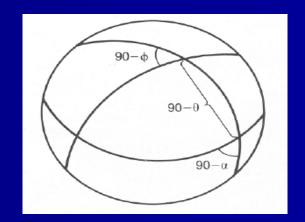
Analyse
structurale du
gisement
(pendage,
azimut,
espacement,
extension des
discontinuités...)



Analyse du gisement

Analyse du gisement

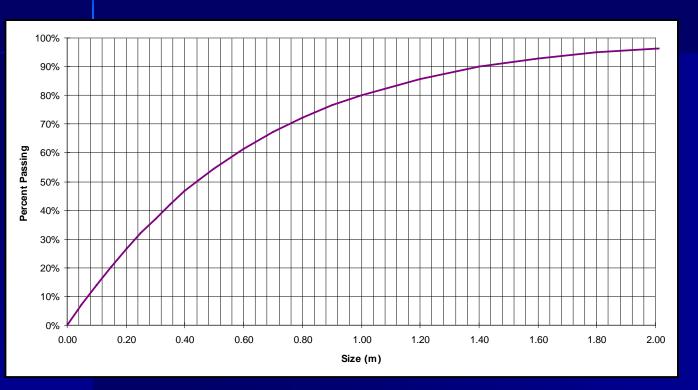
Etablissement d'un stéréogramme



Un exemple de modèle prédictif de la blocométrie in-situ : le modèle de WANG et al.

Ref.: WANG, LATHAM and POOLE « In-situ block size assessment from discontinity spacing data (1990) / Predictions of block size distribution for quarrying (1991) »

$$V_i = C_i * (\gamma_1 \gamma_2 \gamma_3) / [\cos(\theta) \cos(\phi) \cos(\alpha)]$$
 $i = 10, 20, ... 100$


$V_i(m^3)$	Coefficient C_i	90% confidence intervals
V ₁₀	0.322	±0.131
V ₂₀	0.710	± 0.249
$V_{20} = V_{30}$	1.207	± 0.424
V_{40}	1.852	± 0.645
V ₅₀	2.708	± 0.984
	3.980	± 1.550
$V_{60} = V_{70}$	5.867	+ 2.597
V_{80}	8.948	± 4.515
V_{90}	15.332	± 9.531
V_{100}	38.922	± 23.734

Modèle prédictif de la blocométrie après abattage

KUZ-RAM FRAGME	NTATION	ANALYS	is			
PROJECT:	MELCHOR	ITA				
SITE :	CULEBRILI	LAS Test 2		Notes		
Prediction model 3 X 2.5			Square pattern = 1, staggered pattern			
Intact Rock Properties				Blasting pattern design		
Rock Factor				Staggered or square	1	
Rock Type	Granodiorite			Hole Diameter (= ANFO diameter)	76	mm
Rock Specific Gravity	2.65	SG		Slurry / Dynamite cartridge diameter	60	mm
Elastic Modulus	60	GPa		Bottom charge length	1.00	m
UCS	100	MPa		Bottom charge explosive type	dynamite	
				Bottom charge explosive weight	4.10	kgs
				Mass energy	17.42	MJ
Jointing				Column charge length	7.00	m
Spacing	1.4			Column charge explosive type	ANFO	
Dip		deg		Column charge explosive weight	26.99	
Dip Direction		deg		Mass energy 8		MJ
Average In-situ block size X	5	m		Charge Length	8.00	m
				Burden	3.00	
				Spacing	2.50	m
				Drill Accuracy SD	0.50	m
Explosives				Bench Height	10.00	
Type of explosives	Dynamite + A			Face Dip Direction		deg
Relative weight strength RWS		(% ANFO)		Charge Weight per hole		kg/hole
Nominal VOD	3500	m/s		Charge Density	0.41	kg/m ³
Effective VOD	3100	m/s		Powder Factor	0.156	kg/ton
Explosive Strength 0.83						
				Fragmentation Target Parameters		
				Oversize	1.3	m
				Optimum	0.5	m
				Undersize	0.07	m

Modèle KUZ-RAM

% passant = 1-exp(-(S/S_{63.2})ⁿ équation ROSIN-RAMMLER (distribution de WEIBULL calée à 63.2 %)

Percent Passing	Size (m)	Av. VVeight (t)
0.0%	0	0
7.0%	0.05	0.000
13.9%	0.10	0.003
20.3%	0.15	0.009
26.4%	0.20	0.021
32.0%	0.25	0.041
37.2%	0.30	0.072
42.1%	0.35	0.114
46.6%	0.40	0.170
50.7%	0.45	0.241
54.6%	0.50	0.331
61.5%	0.60	0.572
67.3%	0.70	0.909
72.3%	0.80	1.357
76.6%	0.90	1.932
80.2%	1.00	2.650
85.8%	1.20	4.579
89.9%	1.40	7.272
92.8%	1.60	10.854
94.9%	1.80	15.455
96.4%	2.00	21.200
98.5%	2.50	41.406
99.4%	3.00	71.550
99.9%	4.00	169.600

Parcent Passing Size (m) Av Weight (t)

Modèle KUZ-RAM : n = f (paramètres abattage)

$$n_{RRD} = \left(2.2 - 14\frac{B}{d}\right) \cdot \left\{0.5\left(1 + \frac{S}{B}\right)\right\}^{0.5} \cdot \left(1 - \frac{W}{B}\right) \cdot \left\{abs\left(\frac{BCL - CCL}{L}\right) + 0.1\right\}^{0.1} \cdot \frac{L}{H}$$

where

d = blasthole diameter (mm), typically minimum of 70 mm

B = burden (m), see Figure 3.55

S = spacing between blastholes (m)

BCL = bottom charge length (m)

abs = absolute value of

CCL = column charge length (m)

L = total charge length (BCL + CCL) (m)

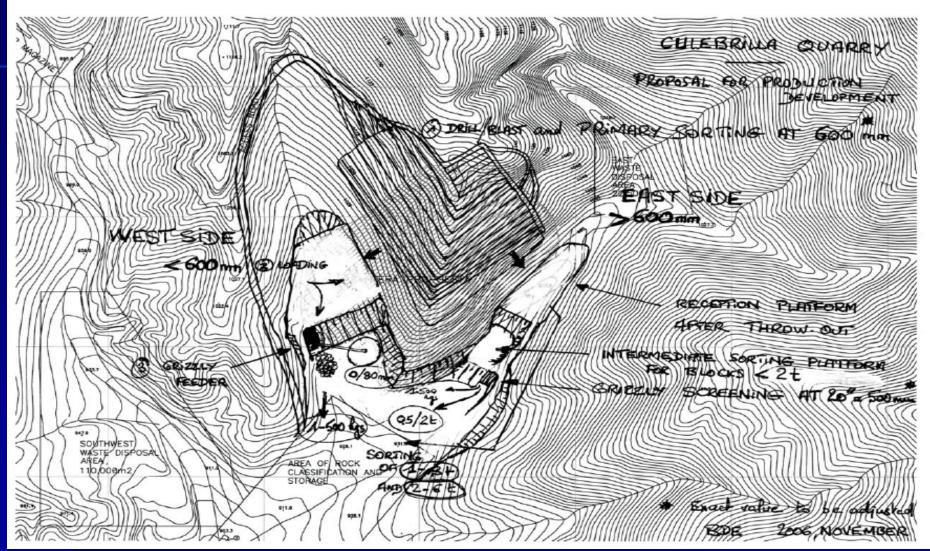
H = bench height or hole depth (m)

W = standard deviation of drilling accuracy (m).

Calage du modèle par des tirs d'essai

Mesures in-situ de la dimension des blocs

Figure 6: Measuring rocks with a simple vernier.


Calage du modèle par des tirs d'essai

Pesage des blocs

Figure 7: Wheel loader and 15 MT scale in weighing process.

Aménagements en carrière

Aménagements en carrière : grizzly pour élimination des < 70 mm (1KG)

Aménagements en carrière : godet à fentes

Merci de votre attention

