



# Experimental study of mechanical and thermal damage in crystalline hard rock

**Mohammad Keshavarz** 

Réunion Technique du CFMR - Thèses en Mécanique des Roches

December, 3<sup>nd</sup> 2009

#### **Overview**

- Introduction
- Characterization of North African gabbro
- Acoustic emission (AE) monitoring of intact rocks during uniaxial tests
- Damage and rock properties evolution due to mechanical and thermal loadings
- Conclusions

| /                                     | X                             | ×             | S                         | <b>K</b>    |
|---------------------------------------|-------------------------------|---------------|---------------------------|-------------|
| Introduction                          | <b>Rocks characterization</b> | AE monitoring | T+M damages investigation | Conclusions |
| · · · · · · · · · · · · · · · · · · · |                               |               |                           |             |

## Main objectives of the research

- To study crack propagation and to predict failure of rock subjected to:
  - high pressure
  - high temperature
- To relate to:
  - Acoustic Emission
  - Sonic waves velocity
  - Micro-crack evolution

in order to investigate damage in crystalline intact rock

| Introduction | <b>Rocks characterization</b> | AE monitoring | T+M damages investigation | Conclusion |
|--------------|-------------------------------|---------------|---------------------------|------------|
|              |                               |               |                           | K *        |

# Failure precursors study in laboratory

Rock deformation data;

 $\geq$ 

- Acoustic emission (AE) and sonic wave velocity changes;
- Infrared radiation (IR) and thermal anomalies;
- Rock electrical resistivity changes ;
- Electromagnetic emissions and anomalies;

|                                        | FN                            | ``            | · · · · · · · · · · · · · · · · · · ·   | N            |
|----------------------------------------|-------------------------------|---------------|-----------------------------------------|--------------|
| Introduction                           | <b>Rocks characterization</b> | AE monitoring | T+M damages investigation               | Conclusions  |
| ······································ | N.                            | ·/······      | × · · · · · · · · · · · · · · · · · · · | { <i>,</i> / |

# Characterization of North African gabbro

# **Microscopic investigation under polarized light**



#### North African gabbro

|              |                        |               |                           | 6           |
|--------------|------------------------|---------------|---------------------------|-------------|
| Introduction | Rocks characterization | AE monitoring | T+M damages investigation | Conclusions |

## **Mechanical tests and physical parameters measurements**

- Uniaxial compression tests
  - Elasticity modulus, E
  - Poisson's ratio, v
  - Max. uniaxial compressive strength,  $\sigma_{cmax}$
- Brazilian tests
  - Tensile strength,  $\sigma_{ct}$
- > Triaxial tests

Introduction

- Mohr-Coulomb, c, φ
- Hoek & Brown, s & m

#### Sonic wave velocity measurements

- Primary elastic wave velocity, Vp
- Shear wave velocity, Vs

## **Specimen preparation and testing equipment**





- a. Grinding machine
- **b.** Measuring of parallelism
- c. Elastic wave measurement
- d. Schenck press
- e. Close view of specimen after uniaxial test







| Introduction | Rocks characterization | AE monitoring | T+M damages investigation | Conclusions |
|--------------|------------------------|---------------|---------------------------|-------------|
|--------------|------------------------|---------------|---------------------------|-------------|

#### **Uniaxial compression test on North African gabbro**



#### Specimen Ga10

|              |                        |               |                           | 9           |
|--------------|------------------------|---------------|---------------------------|-------------|
| Introduction | Rocks characterization | AE monitoring | T+M damages investigation | Conclusions |
| ·····        |                        | 5./           | 1                         |             |

#### **Brazilian tests on gabbro**



|                                       |                                       |                | 1 N                                     | 8 N         |
|---------------------------------------|---------------------------------------|----------------|-----------------------------------------|-------------|
| Introduction                          | Rocks characterization                | AF monitoring  | T+M damages investigation               | Conclusions |
| introduction                          |                                       | AL IIOIIIOIIIG | Trin damages investigation              | Conclusions |
| · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | 17 N.          | 2 · · · · · · · · · · · · · · · · · · · | £./         |

# Ultra high triaxial compression test by Giga press

Max. capacity of machine;  $\sigma_3 = 650$  MPa and  $\sigma_1 = 2400$  MPa



#### Giga press and confinement cell (a) photo of the cell of the press (b) (Gabet et al, 2006 with modification)

Introduction Rocks characterization AE monitoring T+M damages investigation Conclusions

#### **Triaxial test result on gabbro specimen Ga2(200)**



**Conclusions** 

## **Hoek-Brown and Mohr-Coulomb criteria for gabbro**



Mohr-Coulomb: c = 68 MPa and  $\phi = 43^{\circ}$ Hoek and Brown: s = 1 and m = 30

|              | ſ | <u>.</u>                               |     |               | 4      |                                        | 1 | ۶,          |
|--------------|---|----------------------------------------|-----|---------------|--------|----------------------------------------|---|-------------|
| Introduction |   | <b>Docks</b> characterization          |     | AE monitoring |        | T <sub>1</sub> M domogoe invoctigation |   | Conclusions |
| introduction |   | RUCKS CHAIACLEHZALIUN                  |     | AE monitoring |        | T+W Uallayes Investigation             |   | CONCIUSIONS |
|              |   | ······································ | 1.4 |               | 1. Let |                                        |   |             |

## **Summary of mechanical tests and physical measurements**

|                         | North African Gabbro |                    |    |  |  |  |  |
|-------------------------|----------------------|--------------------|----|--|--|--|--|
| Properties              | Mean<br>values       | Number<br>of tests |    |  |  |  |  |
| ρ <sub>b</sub> (g/cm3)  | 2.90                 | ± 0.05             | 3  |  |  |  |  |
| Porosity (%)            | <0.5                 | ± 0.05             | 3  |  |  |  |  |
| Vp (m/s)                | 6560                 | ± 99               | 16 |  |  |  |  |
| Vs (m/s)                | 4078                 | ± 76               | 16 |  |  |  |  |
| U                       | 0.21                 | ± 0.03             | 3  |  |  |  |  |
| E [GPa]                 | 88                   | ± 2.5              | 3  |  |  |  |  |
| σ <sub>ct</sub> [MPa]   | 11.5                 | ± 1.5              | 11 |  |  |  |  |
| σ <sub>cmax</sub> [MPa] | 226                  | ± 11               | 3  |  |  |  |  |

|              | N                      | N/            | N                         | `\          |
|--------------|------------------------|---------------|---------------------------|-------------|
| Introduction | Rocks characterization | AE monitoring | T+M damages investigation | Conclusions |
|              |                        |               |                           | <u>,</u>    |

Acoustic emission (AE) monitoring and deformation data during uniaxial tests on intact rock

#### **Damage evolution and stress – deformation curves**



Step I : Cracks closure,  $\sigma_{cc}$ 

Step II : Elasticity, reversible strains, Cracks initiation stress,  $\sigma_{\rm ci}$ 

Step III : Crack damage threshold, maximum contraction,  $\sigma_{cd}$ 

Step IV : Peak strength, failure stress,  $\sigma_{\rm cf}$ 

Step V : Post- failure, strain softening

16

#### Monotonic Compression Tests and Typical Thresholds during unconfined compression test

|              |                        |               |                           | ±0          |
|--------------|------------------------|---------------|---------------------------|-------------|
| Introduction | Rocks characterization | AE monitoring | T+M damages investigation | Conclusions |

## **Acoustic emission and related parameters**



#### **Comparison of AE records and Stress – Deformation data**



#### Identification of damage thresholds in gabbro specimen Ga10 by AE energy parameter

|              |                                             |          |               |     |                           |     | 18          |
|--------------|---------------------------------------------|----------|---------------|-----|---------------------------|-----|-------------|
| <i>۱</i>     | <br>( , , , , , , , , , , , , , , , , , , , |          |               | 4   |                           |     |             |
| Introduction | ocks characterization                       |          | AE monitoring |     | T+M damages investigation |     | Conclusions |
|              | <br>                                        | . B. All |               | 5 M |                           | -17 |             |

#### AE monitoring during Brazilian test on gabbro



#### **Comparison of AE monitoring and stress – deformation data**

- AE monitoring is more accurate than stress-deformation curve to determine damage thresholds,
- AE energy parameter is a more effective parameter than the conventional AE hit number to detect different stages of the rock failure process,

| Introduction Rocks characterization AE monitoring T+M damages investigation Conclusion |              | 4 ° • • • • • • • • • • • • • • • • • • | F             | F                         |             |
|----------------------------------------------------------------------------------------|--------------|-----------------------------------------|---------------|---------------------------|-------------|
|                                                                                        | Introduction | Rocks characterization                  | AE monitoring | T+M damages investigation | Conclusions |

# Damage investigations on mechanically and thermally loaded specimens

#### **Different effects of mechanical and thermal changes on rocks**



| /            | <b>6</b> . |                                       | 6 |                                       | 4   |                           | έ <b>ι</b> , |
|--------------|------------|---------------------------------------|---|---------------------------------------|-----|---------------------------|--------------|
| Introduction |            | <b>Rocks characterization</b>         |   | AE monitoring                         |     | T+M damages investigation | Conclusions  |
|              | 1.1        | · · · · · · · · · · · · · · · · · · · |   | · · · · · · · · · · · · · · · · · · · | 1.1 |                           |              |



To evaluate the magnitude of damages in both T. & M. methods, we've used,

- > Uniaxial compression tests ( $\sigma_{cmax}$ , E, U, ...),
- Elastic wave velocity measurements (Vs and Vp),
- AE monitoring,
- Microscopic investigation.

| Introduction Rocks characterization AE monitoring T+M damages | investigation | Conclusions |
|---------------------------------------------------------------|---------------|-------------|

#### **Mechanical damage investigation**



#### Ultra high pressure triaxial test on gabbro specimen Ga1(650)

|              |                               |               |                           | 24          |
|--------------|-------------------------------|---------------|---------------------------|-------------|
| Introduction | <b>Rocks characterization</b> | AE monitoring | T+M damages investigation | Conclusions |

#### **Thermal damage investigation**

#### Nominale temperature:

150, 300, 450, 500, 600, 700, 800 and 1000 °C

#### Heating rate: 100°C/hour





# Uniaxial compression tests on specimen having experienced high temperature



|              |                               |               |                           | 26          |
|--------------|-------------------------------|---------------|---------------------------|-------------|
| Introduction | <b>Rocks characterization</b> | AE monitoring | T+M damages investigation | Conclusions |

 $\gamma c$ 

#### **Uniaxial strength and elastic modulus changes**



|              |                        |               |                           | 27          |
|--------------|------------------------|---------------|---------------------------|-------------|
| Introduction | Rocks characterization | AE monitoring | T+M damages investigation | Conclusions |

#### Sonic wave velocity changes (Vs and Vp)



|              |                               |         |                                         |       |                           |          | 28          |
|--------------|-------------------------------|---------|-----------------------------------------|-------|---------------------------|----------|-------------|
|              | \                             |         |                                         | 4     |                           |          |             |
| Introduction | <b>Rocks characterization</b> |         | AE monitoring                           |       | T+M damages investigation |          | Conclusions |
|              |                               | - E / I | ••••••••••••••••••••••••••••••••••••••• | 1.1.1 |                           | 1. E A " |             |

#### **Acoustic emission monitoring**



|              |                        |               |                           | 29          |
|--------------|------------------------|---------------|---------------------------|-------------|
| Introduction | Rocks characterization | AE monitoring | T+M damages investigation | Conclusions |
| ·······      |                        |               |                           |             |

# **Photos of specimen – macroscopic failure**



|              | Ŋ                      | \             | Ŋ                                      | Ŋ           |
|--------------|------------------------|---------------|----------------------------------------|-------------|
| Introduction | Rocks characterization | AE monitoring | T+M damages investigation              | Conclusions |
| ······       | ·                      | j             | ······································ |             |

# **Microscopic investigations of thermally treated specimens**



**Oxidation** appearance at 500°C



Micro-crack initiation due to different thermal expansion coefficient between pyroxene and a surrounded crystal



#### Oxidation development in pyroxenes at 800°C



Blow up liquid and gas inclusion at 300°C effects

|              |   |                        | <br>          | <br>                      |   |             |
|--------------|---|------------------------|---------------|---------------------------|---|-------------|
| Introduction | F | Rocks characterization | AE monitoring | T+M damages investigation | D | Conclusions |

# Microscopic investigations of Mechanically damaged specimens



#### **Evidences of ultra high triaxial** mechanical damage in plagioclase



|              |                        |               |                           | JZ          |
|--------------|------------------------|---------------|---------------------------|-------------|
| Introduction | Rocks characterization | AE monitoring | T+M damages investigation | Conclusions |

# **Tomography investigations**





**Intact rock** 

800°C loaded

Introduction

# **Conclusions**

# Conclusions (1/2)

Damage investigations on intact rocks:

- AE monitoring is more efficient way than rock deformation data to determine damage thresholds during uniaxial compression tests,
- We found also that AE <u>energy</u> parameter delineates the different steps of rock failure procedures more accurately than conventional AE <u>hit</u> <u>number</u>,

|              | P                             |               |                           | P.,         |
|--------------|-------------------------------|---------------|---------------------------|-------------|
| Introduction | <b>Rocks characterization</b> | AE monitoring | T+M damages investigation | Conclusions |
| ······       |                               |               |                           |             |

# **Conclusions (2/2)**

#### **Thermally treated rocks:**

- Physical properties (E, σ<sub>max</sub>, Vp, Vs and AE energy and AE hit parameters) decrease with the temperature increase,
- > Above 600°C mechanical properties of thermally treated gabbro drastically decrease,
- Oxidation in high temperature and different expansion coefficients between crystals are the main causes of damage in thermally treated specimens.

#### **Mechanically damaged rock:**

- In spite of ultra high pressure, the mechanical and physical parameters of rock decrease only up to 25 %. We conclude that this is due to smaller porosity of gabbro. However, AE monitoring demonstrates mechanical damage better than uniaxial test and sonic wave velocity measurements,
- In thin section studies, the development of micro-cracks through the crystalline structure is typical of mechanical damage.

|              |                                         |                                   | 50                 |
|--------------|-----------------------------------------|-----------------------------------|--------------------|
|              | S                                       |                                   |                    |
| Introduction | <b>Rocks characterization</b>           | AE monitoring T+M damages investi | gation Conclusions |
|              | 2 · · · · · · · · · · · · · · · · · · · |                                   |                    |

# Thank you