

Endommagement et rupture autour des puits pétroliers

Drilling Integrity Analyses in Conventional and Unconventional Environments: Common Practices and Current Challenges

Vincenzo De Gennaro

PhD , Geomechanics Advisor Europe & Africa Geomechanics Technical and Business Manager Pau (F)

Software Integrated Solutions (SIS) vdegennaro@slb.com

October 15, 2015

Presentation outline

- Introduction
- Conventional failures
- Unconventional failures
- What's next ? ...
- Concluding remarks

Introduction : Well Centric Geomechanics (1D)

Performed building a Mechanical Earth Model (MEM)

<u>Continuous description of mechanical properties and stresses along the well calibrated against</u>

measurements and observations

Schlumberger

Conventional failures

• Calibration is correlated with wellbore failure

Other conventional failures

After Bratton et al., 1983 (SPWLA)

Schlumberger

Single Well Drilling Geomechanics Modelling

Mud Weight Window

Classical 1D approaches – Kirsch's solution

- The simplest stress calculation approach is the Linear Elastic rock behavior model
- Calculated at the borehole wall
- Minimum pressure to keep all the points around the wellbore in the elastic range

$$\sigma_{r} = P_{w}$$

$$\sigma_{\theta} = \sigma_{H} + \sigma_{h} - 2(\sigma_{H} - \sigma_{h})\cos(2\theta) - P_{w}$$

$$\sigma_{a} = \sigma_{z} - 2\nu(\sigma_{H} - \sigma_{h})\cos(2\theta)$$

$$\tau_{r\theta} = \tau_{\theta z} = \tau_{rz} = 0$$

After Zang & Stephansson (2010)

 σ_h

Classical 1D approaches – Breakouts angle

Stresses vary away from wellbore wall

After Zang & Stephansson (2010)

- Rock obeys Mohr-Coulomb failure criterion
- Clear physical meaning
- Not easy to calibrate also relying on available wellbore images (fluids effects, filtering, pads contact)
- Extension of breakouts (failure angle) is a function of the stress contrast (stress polygons). Vertical wells would have different breakouts angle than horizontal

Depth of Damage (DoD) model

Schlumberger

Motivation

- Tectonically active area
- Initial models had no mud window
- What mud weight to use?
- How to define a fast and effective solution that includes real rock behaviour?

After Frydman et al. (2011)

Strain hardening/softening behaviour

Schlumberger

Depth of Damage (DoD)

- Stresses vary away from wellbore wall
- Failure quantified via DoD percentage (r_{damage} / r_{well})
- Calibrated on wellbore stability and actual MW (offsets wells)
- An optimum DoD is identified over the studied area based on observations from DDRs

Schlumberger

Mud Weight Window and Wellbore Damage

Drilling events & depth of damage

Radial profile & depth of damage

Improvement in Drilling Performance

Unconventional failures: anisotropy

- Material and strength anisotropy of shales can effect the stability of any kind of cavity such as boreholes, tunnels, caves etc.
- The initiation of fractures as well as the collapse of cavities depends on stress field, orientation, preexisting fractures and intrinsic anisotropic properties of the rocks.
- Especially for boreholes the anisotropic nature of shales has significant impact on magnitude and orientation of failure
- It is crucial to provide an analytic solution for the borehole stress concentration as well as an anisotropic failure criterion

Intrinsic anisotropy

Anisotropic Strength

Anisotropic stress (FF and BH)

Anisotropies

Elastic Mechanical Properties from Acoustic

Rock type	Available Sonic Measurements	Unknown Parameters		
x t z Isotropic	2 VERTICAL COMPRESS. SLOWNESS VERTICAL SHEAR SLOWNESS	2 YOUNG'S MODULUS POISSON'S RATIO		
	3	5		
T	VERTICAL COMPRESS. SLOWNESS	VERTICAL YOUNG'S MODULUS		
x	VERTICAL SHEAR SLOWNESS	HORIZONTAL YOUNG'S MODULUS		
TIV	HORIZONTAL SHEAR SLOWNESS	VERTICAL POISSON'S RATIO		
		HORIZONTAL POISSON'S RATIO		
		VERTICAL SHEAR MODULUS		

Use anisotropic stress models and <u>core data</u> to define the remaining 2 unknowns

Rock Fabric, Mechanical Properties & Stresses

Strength Anisotropy in Shale

H-well

after Niandou et al., 1997 (IJRMMS)

Schlumberger

Stress Concentration

- Based on classical elastic solutions for anisotropic media by Lekhnitskii (1963), Amadei (1983)
- This solution computes the state of stress around borehole for any
 - stress field
 - borehole orientation
 - material anisotropy and orientation
- The analytical solution is fast, accurate and 3D
- Validated via FEM analysis

Validation with a FEM model

After Gaede et al., 2012, (IJRMMS 51)

Schlumberger

Anisotropy Impact on Stress Concentration

Anisotropic Failure criterion

- Anisotropic failure model: Plane-of-Weakness model (Jaeger's sliding model,1960), other possible (Pariseau, Pei, etc.)
- Mohr-Coulomb intact rock failure
- Plane of Weakness sliding on weak surfaces
- Validated against analytical solution for vertical well
- Required inputs cohesion and friction angle for intact rock and weak plane
- Evaluation of failure criteria: both criteria are evaluated for a given depth
- Various ways of analysis:
 - single depth for full borehole circumference
 - single depth 3D provides stress directions around borehole circumference and zone of failure
 - single depth Schmitt plot e.g. fixed material orientation changing borehole orientation
 - evaluation of failure criteria along well mudweight window & pseudo image

Wellbore Stability Vs. Borehole Orientation

Well trajectory optimization considering borehole stability

Field case study – Clair Field in UK Continental Shelf

Field data published in SPE 124464 (BP)

- Pre-drill analysis identified likely shear failure, 9300'-9400'
- Time lapse monitoring with CDR, showed progressive hole enlargement
- Drillers tripped through this identified section carefully to avoid unnecessary disturbance
- Minimal breakout maintained for 25 days, after 30 days significant enlargement and cavings production. One further trip to complete section ready to case
- Tight hole plotted on time vs. depth plot shows troublesome depths

data

drilling

Mud pressure penetration P_p increases, mud support decreases, swelling, unstable conditions

Chemical potential mechanism due to osmotic outflow (low mud activity, i.e. high salt concentration), P_p decreases, stable conditions

Shale STability Analysis (SSTA)

- Petrophysical and chemical properties of formations (cores)
- Properties of drilling fluids
- Overbalance pressure
- Formation temperature

After Chee et al., 2009 (SPE 126052)

Table 1: Petrophysical and chemical properties of cores, cavings and cuttings of Wara Shale

Offset well

Sample No.	AverageTotal Clay	Porosity (%)	Permeability	Shale	Membrane Efficiency (%)			
	(%)	(~)	(nounty	Bentonite Mud	CaCl ₂ Polymer Mud	Mud A	
Wara-1	50.3	9.32	33.35	0.916	25.4	25.4	31.8	
Wara-2	23.0	13.31	40.99	0.916	19.6	-	24.5	
Wara-3	65.4	7.11	29.14	0.916	28.7	28.7	35.9	
Wara-4	27.0	12.73	39.87	0.916	-	-	25.5	

Table 3: Properties of drilling fluids used in offset wells

Mud Type	Adhesion (dyne/cm)	Kinematic Viscosity (cStoke)	Membrane Efficiency (%)	Salt Concentration (wt%)	Water Activity	
CaCl ₂ Polymer Mud	58.6	Temperature Dependent	Pore Size Distribution Dependent (20.9 –	15.8% CaCl ₂	0.89	
		(0.90 – 0.97)	28.7%)	20.0% CaCl ₂	0.84	
Bentonite Mud	58.6	Temperature Dependent (0.83 - 0.96)	Pore Size Distribution Dependent (19.6 – 31.6%)	3.5% – 4.9% NaCl	0.97 – 0.98	
KCL Polymer	58.6	Temperature Dependent (0.76 – 0.77)	Pore Size Distribution Dependent (13.8 – 24.7%)	12.8% KCI	0.94	

Table 4: Summary of back-analysis of time-dependent wellbore instability events in Wara Shale

						Hole	Calculated Pore Pressure Change After Maximum Exposure Duration		
Well	Depth (ftMD)	Mud Type	Mud Activity	Mud Weight Used (ppg)	Openhole Duration (Day)	Enlargement (% of Wellbore Diameter)	Mud Pressure Penetration Pore Pressure Change (psi)	Chemical Potential Mechanism Pore Pressure Change (psi)	Total Pore Pressure Change (psi)
A1	X22	CaCl ₂ Polymer (15.8%CaCl ₂)	0.89	9.7	4	4.7%	257.1	-88.5	168.7
A1	X37	CaCl ₂ Polymer (15.8%CaCl ₂)	0.89	9.7	4	8.2%	237.6	-103.0	134.6
A2	X58	Bentonite (3.5% NaCl)	0.98	9.4	3	15.0%	138.4	330.7	469.0
A2	X59	Bentonite (3.5% NaCl)	0.98	9.4	3	34.0%	131.8	330.7	462.5
A2	X42	Bentonite (3.5% NaCl)	0.98	9.4	3	7.0%	287.2	285.7	572.9
A2	X43	Bentonite (3.5% NaCl)	0.98	9.4	3	40.0%	125.3	203.0	328.4
A2	X44	Bentonite (3.5% NaCl)	0.98	9.4	3	8.4%	172.3	330.7	503.0
Wa	ra Shale Ac	tivity: 0.916				•			

Positive net change indicates that pore pressure increases with time in the formation

Unconventional failures: impact on NPT

Offset well : 28 days (13 3/8" and 9 5/8")

Planned Well	Formation	Recommended Mud Weight (ppg)	Recommended Salinity for Water- based Mud A & B	Mud Weight Used During Drilling (PPg)
A3	Ahmadi Shale	11.0	15.0 – 15.5% KCI	10.5
	Wara Shale	11.5	14.0 - 14.5% KCI	11.5 - 11.7

Planned Well :13 days (13 3/8" and 9 5/8")

Unconventional failures: partial saturation

- Time exposure to water based mud due to coring increased water saturation
- Rock exhibits stress-strain-strain rate behaviour (isotach behaviour) Suklje (1957)
- Yield stress is rate dependent (yield stress increases with increasing strain rate)
- Rate dependency is a function of saturating fluid (strain rate increases with increasing fluid saturation)
- This behaviour doesn't impact only drilling, reservoir stimulation in shales induces a similar effect → swelling, creep, fracture closing

After De Gennaro & Pereira, 2013 (Computers & Geotechnics 54)

Unconventional failures: viscoplasticity & partial saturation

- Extended plastic hardening (rate hardening) Dragon & Mroz (1979), Lemaitre & Chaboche (1985)
- Cam-clay partially saturated models family *Alonso & Gens (1990)*

Data after Priol et al., 2007 (Springer Proc. Physics 112)

Unconventional failures: viscoplasticity & partial saturation

Schlumberger

What's next? 3D seismic geomechanics and wellbore and casing integrity analysis

- State of stress underground is generally more complex than the simple scheme addressed by the well centric approach:
 - ✓ Challenging environments deep water, HPHT, tectonic areas, salt
 - ✓ More complex well geometries extended reach, multi-lateral, high dogleg
 - ✓ Recovery depleted fields, shale gas drilling
- Advanced 3D modelling is often mandatory
- Applications are numerous, wellbore and casing integrity analysis are just some

After Rodriguez-Herrera et al., 2014 (EAGE Dubai)

Schlumberger

3D seismic geomechanics and casing integrity analysis

DATA SCREENING

DATA INTEGRATION

ANALYSIS

Example from Deepwater Nakai Trough

Well integrity evaluation for methane-hydrates production

• Detection and estimation of gas hydrates saturation using rock physics and seismic inversion Dai et al., 2004 (The Leading Edge)

After Qiu et al., 2015 (SPE Drilling and Completion)

Well integrity evaluation for methane-hydrates production

(a) Before production

(b) After 20-day production

(b) After 20-day production

Fig. 7—Young's modulus before and after 20-day production.

(a) Before production

- Correlations derived to determine mechanical properties from petrophysical properties, seismic velocity, hydrates saturation, overburden stress
- Hydro-mechanical coupled effects of hydrates production simulated by a third party methane-hydrate production simulator coupled to Schlumberger geomechanical simulator (1-way or explicit coupling)
- Degradation of mechanical properties due to hydrate dissociation (stiffness & strength) correlated to hydrates saturation and mean effective stress change *Sultan et al., 2012 (Geotechnique 62(9))*

Sector model

Seafloor (998 mTVDSS)

Full Model

Sector Production Well

Schematic Completion

Cement-Casing integrity analysis

Fig. 18—Vertical-displacement distribution in cross section (Y–Z) after production: (a) on original geometry and (b) on deformed grid.

Cement-Casing integrity analysis

Fig. 19—Horizontal displacement (ZZ) distribution: (a) on the original grid geometry and (b) on deformed grid in the near-wellbore region.

Cement-Casing integrity analysis

Fig. 21—Equivalent plastic strain after 20-day production: (a) including casing results; (b) excluding casing results.

Concluding remarks

• The proposed integrated geomechanics workflows enhances reservoir characterization and cross-discipline capabilities.

• Access to data for validation is essential, this is often a major missed information

• Solutions need to comply often, if not always, with operational needs: fast implementation, simplicity, scalability; all this while ensuring sound technical solutions.

Operational needs are often conflicting with natural complexity of the problem, especially for drilling
 Schlumberger