CFMR/SPE Workshop on Damage and failure around deep boreholes, Paris, 2015-10-15

Borehole failure and post failure

Euripides Papamichos

Aristotle University of Thessaloniki, Greece, <u>epapamic@civil.auth.gr</u> and SINTEF Petroleum Research, Trondheim, Norway, <u>euripides.papamic</u>

LE Walle, AN Berntsen, P Liolios, P Cerasi, ...

Scan 14

Aristotle University of Thessaloniki

- Boreholes are inherently stable !!
- How do we take advantage of that?
- Can we tolerate initial failure?

A. Hollow cylinder test (w/ fluid flow)

• Typical test for studying borehole failure in petroleum engineering

Laboratory Sand production tests

Hollow cylinder experiment

Loading cell

Instrumented jacketed specimen

Photographs SINTEF Petroleum Research, Norway

Aristotle University of Thessaloniki

B. Polyaxial hollow prism tests (w/ flow)

Stress anisotropy

$$- K_z = \sigma_z / \sigma_R$$

$$- K_r = \sigma_r / \sigma_R$$

MTS Design – Sintef Custom Pressure Vessel

- Cavity deformations
 - The deviation of the 2 measurements indicates cavity failure
 - AE location and borescope data confirm this

Borehole failures

- Lateral failure
 - Breakouts

$$\boldsymbol{s}_{qint} > \boldsymbol{s}_{zint} > \boldsymbol{s}_{rint} = 0$$

- Axial failure
 - Toroids

$$\boldsymbol{S}_{zint} > \boldsymbol{S}_{qint} > \boldsymbol{S}_{rint} = 0$$

(Maury 1992)

(Papamichos et al. 2009)

Aristotle University of Thessaloniki

Hole-size effect on failure stress

• Isotropic loading (e.g. Papamichos + van den Hoek 1995)

10

How do we calculate borehole failure stress?

• Initial yield based on elastic analysis + plasticity criterion GREATLY UNDERESTIMATES failure stress

Why?

25

20

15

10

5

0

0

Axial stress [MPa]

- Rock near the cavity does not fail when it reaches its peak strength
- Instead it yields and plastifies creating a plastic region
- Remaining rock supports more stress until macroscopic localization

Peak strength

0.008

0.01

Axial strain

0.004

Cavity failure

0.006

0.002

Triaxial test

How do we calculate borehole failure stress?

- Post-failure numerical analysis (localization of deformation in breakouts)
- Bifurcation condition for non-trivial solution of hole instability (for isotropic loading)
 - Continuum with microstucture (Cosserat, gradient, nonlocal etc.) -> Scale effect
- <u>Alternative</u>
- Critical plastic shear strain (e.g. Morita Sand3D, Kjørholt et al. 1998)
 - Criterion developed for commercial applications usually FEM
- CAN WE DO THAT?
 - COMPARE LOCALIZATION (w/Cosserat) vs PLASTIC STRAIN CRITERIA for various stress anisotropies

Isotropic stress $K_r = 1$ – Shear plastic strain

Anisotropic stress $K_r = 0.7$ – Shear plastic strain

Stress-anisotropy effect on failure stress

n Stress anisotropy effect independent of hole size (Papamichos 2009)

16

... on plastic shear strain

n Critical plastic strain independent of stress anisotropy Kr

Hole-size effect on failure stress

• Hole size effect independent of stress anisotropy K_r

18

... on plastic shear strain

Critical plastic strain depends on hole size n

Hole diameter [mm]

Conclusion

- Size effect independent of stress anisotropy OR Stress anisotropy effect independent of hole size
- Critical plastic strain
 - Independent of stress anisotropy
 - Increases with decreasing hole size

Stability of non-circular holes / breakouts

- Breakouts grow (propagate) stably
 - Higher stress is needed to propagate the breakout
 - Similar observations in boreholes, tunnels etc.
 - Hollow cylinder tests with other cavity shapes (*Zheng + Khodaverdian 1996*)
 - Circular, Elliptic, Cavity w/ breakouts
 - Cavities w/ breakouts have 20-33% higher failure stress

SINTEF

But... stress concentration at breakout tip increases with breakout depth

 σ_f

HC Experiments with/without breakouts

- Red Wildmoor sandstone (at humid state UCS = 15.3 MPa)
 - Circular hole
 - Elliptical breakouts: d/ri = 0.5, 1
 - Convex breakouts: d/ri = 1
 - Concave breakouts: d/ri = 1

Elliptical d/ri = 0.5

Elliptical d/ri = 1

Cylindrical d/ri = 0

Convex d/ri = 1

Concave d/ri = 1

Cylindrical hole

Cavity deformations

Petroleum

Research

Elliptic breakout d/ri = 0.5 **Cavity deformations**

Hole deformation / diameter

Petroleum

Research

() SINTEF

Elliptic breakout d/ri = 1

Cavity deformations

Cavity failure stress

Post-failure analysis Circular hole

Post-failure analysis Elliptical breakout d/ri = 0.5

Petroleum

Research

() SINTEF

Post-failure analysis Elliptical breakout d/ri = 1

Initial failure

- Failure when <u>buckling</u> and <u>shear-banding</u> close to the cavity initiates
- Failure stress decreases with increasing breakout depth

Post-failure

- Material fails locally but the structure <u>can</u> sustain higher stress
- Global failure
 - Failure when bridge of softening material occurs

Scale effect in volumetric sand production (ARMA 2012 Chicago)

Effect of hole diameter on failure stress and sand mass produced in sandstones

- Hole failure <=> Sand onset
- Hole shape evolution <=> Sand production volume (or rate)
- Is there a scale effect on volumetric sand production?

What sand volume models predict?

- Numerical models
 - Erosion
 - Elastoplasticity
- Sand volume ~ Degradation zone volume ~ D²
- Larger holes ®
 - Earlier sand onset
 - Much more sand volume
- Analytical sand volume model
- Sand volume ~ Hole surface ~ D
- Larger holes ®
 - Earlier sand onset
 - More sand volume

Sand production tests

- Three sandstones:
 - Castlegate: Class A, brittle
 - Saltwash North: Class B, ductile
 - Saltwash South: Class C, compactive
- One phase saturation and flow (paraffin oil)
- D = 20 mm, D = 40 mm

Cumulative sand production – Castlegate (class A)

Normalized erosio

Radial distance normal to slits ry/ri

-5

istotle University of Thessaloniki

Cumulative sand production – Saltwash North (class B)

Cumulative sand production – Saltwash South (class C)

Experimental conclusions

- Scaling sand production with hole size is non-trivial not merely proportional to borehole surface (~D) or volume (~D²)
- Class A / Brittle sandstones: Almost no scale with D due to production from slit tips
- Class B /Ductile sandstones: Scales roughly as D² due to breakouts
- Class C /Compactive sandstones: Scales with D

