

Laboratoire 3SR

Grenoble France www.3sr-grenoble.fr

FEM-DEM Multiscale analysis in Geomechanics : Strain Localisation and 2nd Gradient Regularisation

<u>J. Desrues</u>, T.K. Nguyen, A. Argilaga Claramunt, G.Combe, D. Caillerie, S. Dal Pont **Laboratoire Sols, Solides, Structures et Risques (3SR) CNRS - Université de Grenoble**

CNRS UMR 5521 GRENOBLE INP UJF GRENOBLE I

Grenoble IN

UNIVERSITE JOSEPH FOURIER SCIENCES TECHNOLOGIE MEDECINE

CFMR - Paris- March 19th 2015

Outline

- 1. Introduction & principle
- 2. Micro-scale (DEM) Model
- 3. Multi-scale Coupling Method
- 4. FEM-DEM simulation
- 5. 2nd gradient : motivation, methods and results
- 6. Conclusions & Perspectives

Introduction : bridging scales in Geomechanics :

In experiments : X-Ray µtomography allows to catch both the big picture and the fine details in a single shot

In-situ triaxial test in sand using X-Ray tomography

Introduction : bridging scales in Geomechanics : **modelling**

A continuum media or an assembly of particles ?

Continuum : FEM	Particles : DEM
• well suited to Real scale problem	Reproduces « naturally » the complex behaviour of grains
○ CAN NOT realistically model their discrete nature	 assembly : cyclic response, anisotropy, strain path dependency Computation time depends on the number of grains -> high CPU costs > limitation to small problems

Coupling FEM-DEM 😳 😳

Introducing a two-scale numerical homogenization approach by FEM - DEM

Introducing a two-scale numerical homogenization approach by FEM - DEM

Introducing a two-scale numerical homogenization approach by FEM - DEM

Principle FEM x DEM

Principle FEM²

Principle FEM x DEM

Micro-scale Model

Discrete Element Method (Soft contact dynamics type, Cundall & Strack 1979) with bi-Periodic Boundary Conditions

* : (e.g. Gilabert et al., 2007)

Macrosc. Stress tensor: $\sigma_{ij} = \frac{1}{c} \sum_{k=1}^{N_c} f_i^k \cdot l_j^k$

Contact laws *

- Normal repulsive contact force

$$\begin{split} f_{el} &= k_n \cdot \delta \\ \begin{cases} \delta > 0 & \text{Contact present} \\ \delta &= 0 & \text{No contact} \end{cases} \end{split}$$

- Tangential contact force

$$\delta f_t = k_t \cdot \delta u_t$$

- Coulomb condition

$$\left\|f_{t}\right\| \leq \mu . f_{el}$$

- Cohesion

 $f_n = f_{el} + f_{n0}$

 $f_{n0}\,$: cohesive force

Micro-scale Model

Biaxial test (DEM with PBC): REV contains 400 particles

What do we need ? a FEM code + a DEM code + a bridging procedure

► FEM code :

the choice made has been to use the large multi-purpose FEM code Lagamine¹, Liège University (ULg). Also implemented in FlagShyp²

 DEM code : an as-compact-as-possible DEM kernel !
 -> in-house 3SR-Grenoble DEM code, Geomechanics team. strong requirement : quasi-perfect static equilibrium at the end of each DEM step.

► Bridge :

direct incorporation of the DEM code as a constitutive law in the FEM code (convenient for sequential programming, or OpenMP parallel programming)

1 – Lagamine, Liège University Ulg

2 – FlagShyp Software, Bonet and Wood, Swansea UK 2012

Two examples of failure in real geomaterias

Triaxial test :

ideally, should be *homogeneous*, but ... in the lab, observation :

localised deformation

Triaxial test on Hostun sand specimen, JL Colliat, 3SR Grenoble 1986

2. Borehole or gallery stability problem , (can be studied as a hollow cylinder under differential pressure)
(analogous to a borehole or a gallery) *heterogeneous* by essence
in the field, observation : *localised deformation*

van den Hoek, P.J., Smit, D.-J., Kooijman, A.P., de Bree, P., Kenter, C.J., Khodaverdian, M., 1994. Size dependancy of hollow-cylinder stability. Eurock, vol. 94. Balkema, Rotterdam.

Multiscale Computations: Numerical results

DEM parameters

$$\kappa = k_n / \sigma_0 = 1000$$

$$k_n/k_t = 1$$

$$\mu = 0.5$$
$$p^* = \frac{f_c}{a \cdot \sigma_0} = 1$$

FEM x DEM simulation of a biaxial compression test

Macro: discretization by 128 finite elements Q8
Micro: REV contains 400 grains

Strain Softening and Strain localization : FEM x DEM response

Deformed structure and second invariant of strain tensor

Multiscale Computations: different meshes

Mesh dependency as usual in FEM : issues and solutions

106 elements

Triaxial test : ideally, should be *homogeneous*, but ... in the lab, observation :

localised deformation

Triaxial test on Hostun sand specimen, JL Colliat, 3SR Grenoble 1986

Second example :

2. Hollow cylinder under differential pressure

(analogous to a borehole or a gallery) *heterogeneous* by essence in the field, observation :

localised deformation

van den Hoek, P.J., Smit, D.-J., Kooijman, A.P., de Bree, P., Kenter, C.J., Khodaverdian, M., 1994. Size dependancy of hollow-cylinder stability. Eurock, vol. 94. Balkema, Rotterdam.

Multiscale Computations: Hollow cylinder (drilling), Strain localization

Mesh dependency problem

Solution ? : regularization of the bvp

Multiscale Computations: different meshes

Mesh dependency as usual in FEM : issues and solutions

Second gradient regularisation after Chambon R. et al. (1) & Bésuelle P. (2)

- Media with microstructure : enriched kinematics
- macrokinematics
 - u_i is the (macro) displacement field
 - $\overline{F_{ij}}$ is the macro displacement gradient

$$F_{ij} = \frac{\partial u}{\partial x}$$

• D_{ij} is the macro strain:

$$D_{ij} = \frac{1}{2}(F_{ij} + F_{ji})$$

• R_{ij} is the macro rotation:

$$R_{ij} = \frac{1}{2}(F_{ij} - F_{ji})$$

The internal virtual work

enrichment : microkinematics

•
$$f_{ij}$$
 is the microkinematic gradient.
• d_{ij} is the microstrain:

$$d_{ij} = \frac{1}{2}(f_{ij} + f_{ji})$$

• r_{ij} is the microrotation:

$$r_{ij} = \frac{1}{2}(f_{ij} - f_{ji})$$

• (h_{ijk}) is the (micro) second gradient:

$$h_{ijk} = \frac{\partial f_{ij}}{\partial x_k}$$
 : Local second gradient

$$W^{*i} = \int_{\Omega} w^* \, \mathrm{d}v = \int_{\Omega} (\sigma_{ij} D^*_{ij} + \tau_{ij} (f^*_{ij} - F^*_{ij}) + \chi_{ijk} h^*_{ijk}) \, \mathrm{d}v$$

1 – Chambon R., Caillerie D., Matsushima T. (2001) Int. Journal of Solids and Stuctures vol.38 No 46-47, pp. 8503-27
 2 –Bésuelle et al. (2006) Journal Of Mechanics Of Materials And Structures Vol. 1, No. 7, pp 1115-34

Second gradient regularisation after Chambon R. et al. (1) & Bésuelle P. (2)

- Media with microstructure : enriched kinematics
- macrokinematics
 - u_i is the (macro) displacement field
 - F_{ij} is the macro displacement gradient

$$F_{ij} = \frac{\partial u_i}{\partial x_j}$$

• D_{ij} is the macro strain:

$$D_{ij} = \frac{1}{2}(F_{ij} + F_{ji})$$

• R_{ij} is the macro rotation:

$$R_{ij} = \frac{1}{2}(F_{ij} - F_{ji})$$

The internal virtual work

enrichment : microkinematics

- f_{ij} is the microkinematic gradient.
- d_{ij} is the microstrain:

$$d_{ij} = \frac{1}{2}(f_{ij} + f_{ji})$$

• r_{ij} is the microrotation:

$$r_{ij} = \frac{1}{2}(f_{ij} - f_{ji})$$

• h_{ijk} is the (micro) second gradient:

$$h_{ijk} = \frac{\partial f_{ij}}{\partial x_k}$$

Additional kinematical constraint : $f_{ii} = F_{ii}$

$$W^{*i} = \int_{\Omega} w^* \,\mathrm{d}v = \int_{\Omega} (\sigma_{ij} D^*_{ij} + \tau_{ij} (f^*_{ij} - F^*_{ij}) + \chi_{ijk} h^*_{ijk}) \,\mathrm{d}v$$

1 – Chambon R., Caillerie D., Matsushima T. (2001) Int. Journal of Solids and Stuctures vol.38 No 46-47, pp. 8503-27 2 –Bésuelle et al. (2006) Journal Of Mechanics Of Materials And Structures Vol. 1, No. 7, pp 1115-34

Second gradient regularisation (cont'd) after Chambon R. et al. (1) & Bésuelle P. (2)

FEM : introducing Lagrange multipliers to enforce the condition $f_{ij} = F_{ij}$:

$$\int_{\Omega^t} (\sigma_{ij}^t \frac{\partial u_i^\star}{\partial x_j^t} + \chi_{ijk}^t \frac{\partial v_{ij}^\star}{\partial x_k^t}) d\Omega^t - \int_{\Omega^t} \lambda_{ij}^t (\frac{\partial u_i^\star}{\partial x_j^t} - v_{ij}^\star) d\Omega^t - \bar{P}_e^\star = 0$$

1 – Chambon R., Caillerie D., Matsushima T. (2001) Int. Journal of Solids and Stuctures vol.38 No 46-47, pp. 8503-27 2 –Bésuelle et al. (2006) Journal Of Mechanics Of Materials And Structures Vol. 1, No. 7, pp 1115-34

Second gradient regularisation (cont'd)

A 2nd gradient model for FEM-DEM double scale analysis

Restoring mesh independency with 2nd gradient

No 2nd gradient

With 2nd gradient

512 FE x 400 DE

Restoring mesh independency with 2nd gradient

Second Gradient D=0,64E-2

2048 FE x 400 DE

512 FE x 400 DE

2048FEMx400DEM

512FEMx400DEM

Restoring mesh independency with 2nd gradient

► No 2nd gradient

With 2nd gradient

1290FEMx400DEM Loading: increase internal pressure

Second Gradient D=5,00E-2

Second Gradient D=1,00E-1 (x2)

Conclusions & Perspectives

CONCLUSIONS

- We have presented a Two-scale numerical approach for granular materials: combining FEM (at macro scale) and DEM (at micro scale).

- Illustration by two examples of BVP :

- a biaxial compression test and

- a hollow cylinder (analogy of underground excavations and drilling)
- Strain localization was observed in both cases.
- Mesh dependency confirmed.
- 2nd gradient regularization allows to restore mesh independency
 - Mesh independency is restored
 - Parallelisation of the code (element loop) using OpenMP has showed to be very effective

PERSPECTIVES

-3D approach

-HPC high performance computing (calcul intensif):

OpenMP & MPI parallel computing schemes

Laboratoire 3SR Grenoble France www.3sr-grenoble.fr

A FE² model for hydro-mechanical coupling in a brittle material

Bram VAN DEN EIJNDEN^{1,2,3} Pierre BÉSUELLE¹ Frédéric COLLIN² René CHAMBON¹ Jacques DESRUES¹

¹ Univ. Grenoble Alpes and CNRS, Laboratoire 3SR, France
 ² University of Liège, Belgium
 ³ Andra, France

Tsukuba – March 12th 2015

Principle FEM x DEM

Principle FEM²

La problématique de l'EDZ autour des galeries dans les roches argileuses contexte ouvrages de stockage de déchets nucléaires (données ANDRA)

Motivations Microstructure of the clay-rock

10µm

Overlapping between X-ray ηano-CT and incremental 2nd strain invariant field (DIC)

Micromechanisms of deformation

100µm

In situ triaxial loading test at ESRF (ID19) X-ray nanotomography + volume DIC Bésuelle et al., 2013

VAN DEN EIJNDEN, BÉSUELLE, COLLIN, CHAMBON

MOTIVATIONS

Microstructure of the clay-rock

inclusion

_ _ _ _ _

clay matrix

interface inclusion/clay potential cracks in clay Representative elementary volume (REV)

Principle FEM²

Microscale problem

Micro REV: mechanical model (constitutive laws)

- Grains :
 - Linear elastic solids

 $\sigma_{ij} = \delta_{ij}\lambda tr(\boldsymbol{\varepsilon}) + 2\mu\varepsilon_{ij}$

- Interfaces:
 - Damage laws

MICROSCALE PROBLEM

Micro REV: hydraulic model

- Cohesive interfaces (coupling $M \rightarrow H$)
 - Interface opening defines channel hydraulic conductivity ($\kappa \propto \Delta h^3$)
- Flow assumptions
 - Laminar flow between smooth parallel platens
 - Network of 1D channels between grains
 - System of equations for flow in an element

Fluid pressure acting normally on solids boundaries

Strain localization and fluid flow

Figure : Hydromechanical state at 1.5% axial strain

MACRO FIELD EQUATIONS

Second gradient continuum with Hydro-Mechanical coupling

The band thickness depends on constitutive parameters of the model (no mesh size dependence, if the mesh is sufficiently fine / internal length)

Double scale computations Strain localization and anisotropy

- Failure during a gallery excavation: depressurization of the internal pressure, constant external pressure
- 1600 elements
- Constitutive parameters calibrated to fit experimental curves
- Strain localization pattern influenced by the anisotropy of the model

DOUBLE SCALE COMPUTATIONS

Strain localization, anisotropy and fluid flow

wet material

CONCLUSIONS AND PERSPECTIVES

Conclusions

- The FE² approach with local second gradient framework is demonstrated to be suitable for the modelling of hydromechanical coupling
- The FE² model has been introduced in the FE code *Lagamine* (Liège)
- Complexity of the macroscale response can be taken into account, based on realistic microstructures: anistropy, damage, full loading history, strain localization, etc...

Perpectives

- The micromechanical model can be extended: double porosity, non-elastic grains, more general interface law, time dependence, etc...
- Model calibration: macro and micro experimental characterization
- Reduction of computation time (numerical parallelization, etc...)